
Model-Driven Design of City Spaces via
Bidirectional Transformations

Ennio Visconti
Dipartimento di Elettronica,
Informazione e Bioingegneria
Politecnico di Milano, Italy

Christos Tsigkanos
Distributed Systems Group

TU Wien
Austria

Zhenjiang Hu
National Institute of Informatics

University of Tokyo
Japan

Carlo Ghezzi
Dipartimento di Elettronica,
Informazione e Bioingegneria
Politecnico di Milano, Italy

Abstract—Technological advances enable new kinds of smart
environments exhibiting complex behaviors; smart cities are a
notable example. Smart functionalities heavily depend on space
and need to be aware of entities typically found in the spatial
domain, e.g. roads, intersections or buildings in a smart city. We
advocate a model-based development, where the model of phys-
ical space, coming from the architecture and civil engineering
disciplines, is transformed into an analyzable model upon which
smart functionalities can be embedded. Such models can then be
formally analyzed to assess a composite system design. We focus
on how a model of physical space specified in the CityGML
standard language can be transformed into a model amenable
to analysis and how the two models can be automatically kept
in sync after possible changes. This approach is essential to
guarantee safe model-driven development of composite systems
inhabiting physical spaces. We showcase transformations of real
CityGML models in the context of scenarios concerning both
design time and runtime analysis of space-dependent systems.

Index Terms—Bidirectional Model Transformations, Model-
driven Engineering, CityGML, Cyber-physical spaces

I. INTRODUCTION

Contemporary buildings and urban areas often are complex
spatial environments, hosting computational elements as well
as humans and provide different kinds of functionalities,
typically to enable various forms of interaction. As societies
evolve and complexity grows, engineering complex cyber-
physical systems inhabiting spatial environments presents new
challenges, in typical scenarios dominated by information from
multiple domains and the need for assurances regarding the
overall system’s behavior.

The development of such space-dependent, cyber-physical
systems demands for software engineering support facilities
that span their lifecycle, from design to operation. Engineering
can be enabled with model representations of their spatial
environment [1]; such representations can be sourced from
domain models originating in other disciplines and dominated
by their practices, tools and domain knowledge. Design tools
and approaches, as used in civil engineering and architectural
informatics, frequently produce artifacts which are geometrical
or geographical representations describing physical spaces,
such as buildings or cities. Although relying on international
standards and accessible in machine-readable formats, such
physical space descriptions [2], [3] are still often intended
for static documentation or domain-specific purposes. The
resulting models are therefore of non-easily analyzable types,

which hinders their consideration for engineering software-
intensive, composite cyber-physical systems [4]. The domain
models we consider conform to the CityGML [5] standard
which also encompasses buildings (Building Information Mod-
els – BIM [6]), widely used in practice for descriptions of
buildings and cities, for which numerous real-world models
are becoming available [7].

Our work grounds on model-driven principles and aims at
the development of integrated and open tool environments for
systematic model-based engineering of space-intensive sys-
tems, on top of traditional spatial descriptive models currently
used in practice. Our approach entails automatic synchroniza-
tions between spatial domain models and generic, graph-based
analyzable models. The idea is to use exactly the same spatial
domain models used by practitioners to represent urban areas,
buildings and city spaces and project from them some abstract
and more computationally convenient representation, which
can be transformed back to the original one when needed. The
analyzable models we target are formally modeled topological
structures –cyber-physical spaces [4]– enjoying well-defined
semantics, where formal reasoning can be performed. Cyber-
physical spaces are composite models integrating human
agents, computational and physical aspects of systems useful
for analysis. Our proposed formal programming technique and
technical framework assure that relevant information added,
or changes applied to the domain (resp. analyzable) model
are reflected back in the analyzable (resp. source domain)
model automatically and coherently. The technique developed
is rooted in the theory of bidirectional transformations, which
guarantees that synchronization between models is consistent
and well-behaved.

Our key contribution is a technical framework based on
bidirectional model transformations to support engineering of
space-dependent systems. The novel bidirectional reflection
facilities we provide for domain and analyzable models can
be readily used to (i) derive models from spatial models
occurring in practice, since CityGML models of cities are
widely available, and (ii) instrument modeling and analysis
facilities for spatially-dependent cyber-physical systems. Thus,
they have a high potential for adoption by the community.
We further point out that application of bidirectional model
transformations to physical space models describing cities has
not been investigated before by the community. To provide



concrete evidence of the proposed model-based approach, we
demonstrate that bidirectional transformations can be achieved
in practice on real city models. The concrete realization of the
proposed framework as a prototype is freely available as open
source software.

The rest of the paper is structured as follows. Section II
gives an overview of the proposed approach, while Section III
provides necessary background, design goals and challenges.
Section IV describes the design of a bidirectional transforma-
tion between city models and analyzable models. Section V
presents tool support, while Section VI provides an assessment
of the proposed approach over two case studies, targeting
design and operation. Lastly, Section VII gives an insight of
related work in the field, and Section VIII concludes the paper.

II. MODEL-BASED ENGINEERING OF CITY SPACES

Engineering systems inhabiting physical spaces requires
providing facilities that span their lifecycle, from design to
validation of their requirements. Model-based engineering
plays a crucial role, as representations of systems not only
enable design but also analysis and runtime reasoning. This
is evident in contemporary smart building or smart city ap-
plications, where the use of domain-specific models has long
been recognized as beneficial. Representations of the physical
space (such as CityGML, BIM, or GIS), originate in the
respective source domain, typically from other engineering
disciplines. Such representations may enable validation of the
overall system’s requirements. However, from an engineering
perspective, such validation analysis cannot be performed upon
domain representations; analyzable models, typically some
graph-based abstractions, must be obtained from the source
model and brought to the semantic domain. Keeping such
domain models in sync with derived analyzable models is then
crucial. Our approach is illustrated in Figure 1.

Analyzable
Model

CityGML
Domain Model

Changes

Domain-Specific Design Validation & Processing

Synchronization

Changes

Sem
antic Dom

ainSo
ur

ce
 D

om
ai

n

Figure 1: Bidirectional Model Transformations of City Spaces.

For a system at the design phase, the development cycle is
naturally based on source domain models, usually encompass-
ing GIS or BIM, depending on the design goals. CityGML
provides a unified standard for all of them – think of an
architect or urban planner altering the design of a city domain

model such as changing road transportation routes. This occurs
within the source domain and is dominated by the practices,
the tools and the domain knowledge of the particular discipline
(e.g., the transportation expert), such as civil engineering or
urban planning. The overall system inhabiting the physical
space specified by the CityGML description however, may
need to satisfy certain quality attributes demanding particular
kinds of reasoning. For example, the transportation expert
may change the design in order to facilitate an emergency
evacuation scenario. Such an activity is part of the composite
system’s development cycle.

Validation of a design against requirements entails an anal-
ysis activity. This analysis may be tailored to specific types of
quality attributes and can be performed on some representation
of the domain model, which is analyzable and thus situated in
a semantic domain. For a transportation expert for example,
analysis may entail e.g., simulating rescue teams within an
evacuation scenario, by placing them in the analyzable model
and reasoning on their behavior. Note that multiple semantic
domains may be derived depending on different analyses that
are sought. If the design changes, the analysis activity should
be triggered again, to ensure requirements satisfaction on
the changed design – this is often the case in exploratory
processes. Moreover, if requirements are not satisfied, analysis
processes may suggest or incur changes to the analyzable
model in order to achieve a satisfactory design. The transporta-
tion expert for instance, may seek to visualize effects of rescue
teams upon the city domain model, or investigate effects of
the evacuation scenario bahavior upon other aspects captured
in the domain model. Thus, the main contribution realized
in this paper consists of synchronization facilities that ensure
both that changes on the physical domain model (in our case a
CityGML description) – are reflected in the analyzable model
(a graph-based representation), as well as changes performed
to the latter are reflected back to the former.

However, given the informational asymmetry between the
two different types of models, properly synchronizing them is
normally not a trivial task. When performing some operations
to synchronize two models, the transformation is deemed
correct if they are consistent (i.e. some equivalence relation
is defined between the information contained in them) [8].
When the consistency relation has been defined, bidirectional
transformations become a powerful tool to make sure the
synchronization between the models is consistent and well-
behaved. We note that bidirectional transformations have been
of limited use in practical applications until now; we believe
the present work can aid in better understanding some of the
benefits and challenges engineers face in order to achieve
a correct and meaningful reflection of changes between a
domain-specific model and a more abstract one, within our
particular domain.

III. PHYSICAL SPACES AND THEIR REPRESENTATIONS

Engineering space-intensive cyber-physical systems can be
enabled with model representations of their spatial environ-
ment. Spatial environment descriptions are typically found in



other engineering disciplines such as civil engineering, archi-
tectural informatics or architecture. We consider such spatial
environment descriptions as source, domain models. Specif-
ically, we adopt the ones used by practitioners to represent
city-wide spaces (i.e. CityGML), since they also encompass
buildings (i.e. Building Information Models, BIM [6]). How-
ever, CityGML descriptions are of non-easily analyzable types
for the purpose of engineering software-intensive composite
cyber-physical systems. To this end, we first briefly describe
our source models, before succinctly defining the composite
cyber-physical models we target. Those models are analyzable,
enjoy well defined semantics, and can be used for software
engineering purposes.

A. CityGML Descriptions as Source Models

CityGML as virtual 3D city models, have been widely
adopted to analyze and take actions in a growing number of
scenarios including urban planning, emergency management,
traffic noise simulation, navigation systems, urban solar poten-
tial estimation, or visual communication [9], [10]. CityGML
is playing a major role, given its ability to combine both
thematical and spatial representations, in progressive levels of
details [2], [5].

<<Feature>> 
_CityObject

+ creationDate: xs::date [0..1] 
+ terminationDate : xs::date [0..1]
+ relativeToTerrain : RelativeToTerrainType [0..1]
+ relativeToWater : RelativeToWaterType [0..1]

<<Feature>> 
CityModel

<<Feature>> 
gml::_FeatureCollection

<<Feature>> 
gml::_Feature

<<Feature>> 
luse::LandUse

<<Feature>> 
dem::ReliefFeature

<<Feature>> 
veg::_VegetationObject 

<<Feature>> 
frn::CityFurniture 

<<Feature>> 
wtr::_WaterObject 

<<Feature>> 
gen::GenericCityObject 

<<Feature>> 
_Site

<<Feature>> 
tran::_TransportationObject

<<Feature>> 
grp::CityObjectGroup 

<<Feature>> 
bldg::_AbstractBuilding

<<Feature>> 
tun::_AbstractTunnel

<<Feature>> 
brdg::_AbstractBridge 

cityObjectMember
*

*

generalizesTo

*

*

Figure 2: CityGML 2.0 top level class hierarchy addressed by
our framework.

An interesting aspect of CityGML is the flexibility it in-
troduces, by providing a way of defining Application Domain
Extensions (ADEs), in which application requirements related
to the city models can be described, while the enriched model
still complies to the specification [11]. ADEs are formally
defined extensions, specified in XML Schema Definition or

Unified Modeling Language, capable both of adding new prop-
erties to existing CityGML classes and of adding entirely new
classes and data types. For example, an ADE can be a set of
extra attributes and elements nested into a standard CityGML
model, to extend the capability of CityGML buildings in order
to fully support Building Information Modeling descriptors.
This also includes adding extra elements within the ADE,
which reference standard CityGML objects and describe new
relationships among them. These extensions can be arbitrary,
ranging from geometrical aspects like shadow orientation to
process-specific, like historical priority. More than 40 ADEs
have been developed so far, with purposes including noise
propagation, energy distribution, spatial topology and time
variation among the others [11].

Despite being valuable sources of information, CityGML
models’ volume and domain-oriented design, make it chal-
lenging to actually consider them as a data source for complex
analysis and operation, requiring huge application-specific
preprocessing and postprocessing.

Our technical framework has been designed under the
idea of automatically migrating both changes to the stan-
dard CityGML thematic features, shown in Figure 2, and a
given ADE. To the best of our knowledge, despite the many
CityGML ADEs available neither tools nor data are readily
accessible for any of them as of today and, therefore, a
preprocessing step is still needed in order to prepare the source
information describing application-specific relationships, by
referencing objects of the original city model. In the next sec-
tion, to simplify the discussion, we will assume the key() and
children() functions are properly defined with the purposes
of providing a unique identifier of the CityGML feature and
retrieving a list of sub-features respectively.

B. Cyber-Physical Spaces as Target Models

The analyzable models that we target are formally modeled
topological structures specifically aimed at cyber-physical sys-
tems, termed cyber-physical spaces (CPSp) [1], [4] whereupon
formal reasoning can be performed. We opted for this generic
graph-based target model because of (i) its flexibility and
applicability to various types of analyses and (ii) its formal
semantics, allowing for a precise definition of the correctness
of a transformation. Cyber-physical spaces are essentially
graph-based representations of topological relations inherent
in a space, which may span physical or computational barriers.
This allows increased expressive power to represent complex
systems and their interaction with active agents which may in-
clude devices, humans, software components or infrastructure.

Their formal semantics have been given in terms of bi-
graphs [12], a process meta-calculus consisting of two super-
imposed graphs. Such dynamic semantics are quite similar to
graph transformation systems. For complete definitions and
proofs of formal semantics, which are not covered in this
paper, the interested reader can refer to the vast body of
literature on the topic [12]. Scoped to our framework, bigraphs
can be described in terms of the following components:



• A set of labelled nodes v ∈ V which represent the el-
ementary objects of the environment. In the follow-
ing we will consider them as labelled with a pair
(identifier, type) , and we assume that a key(v) func-
tion returning the label is properly defined. In additon, we
suppose that findNode(k, S) is a function that returns a
node v from the set S labelled with k.

• A place graph is a forest, i.e. a set of rooted trees
defined over nodes; this graph captures the notion of
containment -nesting- of nodes. Given the structure of
CityGML models, we can slightly simplify the discus-
sion, considering that the containment relation develops
from a single root representing the CityModel and, thus,
the forest degenerates to a tree. In this perspective, we
refer to child(n) for a node that has n as a parent in the
containment relationship.

• A link graph is a hypergraph defined over the same set
of nodes. Hyper-edges link any number of nodes; this
graph represents generic links (i.e. many-to-many rela-
tionships) among nodes. Subsequently, we suppose that a
proper function, similar in principle to findNode(k, S),
is available to find the links connecting a given node.
Place and link graphs are orthogonal, and edges between
nodes can cross locality boundaries.

Bigraphs allow us to achieve both the level of expressiveness
needed by key topological characteristics and a high level
of flexibility: the place graph defines a hierarchical structure,
allowing us to model the locality in space of the city objects in
terms of topological nesting, while the link graph can represent
arbitrary connections among nodes (i.e. some other topological
relation), enabling the representation of application-specific
relations.

C. Synchronization: Design Goals and Challenges

In our view, model-based engineering of cyber-physical
space-dependent systems should convey the following design
principles, which underly our design of a bidirectional trans-
formation between the two models:

1) Interoperability with well-established domain-specific
standards and data models, namely CityGML and BIM
as used in practice;

2) Provision of an actionable representation of the model in
a non-domain-specific language that can enable complex
analysis, in our case cyber-physical space reasoning;

3) Automatic composition of changed and unchanged parts
of the model in a suitable way (i.e. well-behaved trans-
formations), highly pertinent to both support of design
activities as well as runtime model operations;

4) Decoupling of independent levels of reasoning (e.g.
topological from geometrical) whenever possible, since
those can be considered as being on different levels of
abstraction.

Whichever the goals, it must be noted that the biggest
challenge in synchronizing a highly detailed CityGML model
(originating from domain-specific tools and practices) and

an analyzable model (crafted for representing high-level
application-specific features in terms of topological relations),
relies in keeping the consistency between the two asymmetric
sources of information in both the ”forward” direction (i.e.
the abstraction process) and the ”backward” – or ”putback” –
one (i.e. the reification process). It is particularly the putback
direction that needs special attention, since it requires new
information to be generated, in order to fill missing details
and produce a meaningful and consistent result in terms of
practitioners’ knowledge.

In the following, we illustrate how the above challenges
may be tackled by designing and implementing a consistent
and well-behaved bidirectional transformation (BX) between
source city models and analyzable models which, by design,
properly propagates changes when either one of the models is
modified.

IV. BIDIRECTIONAL TRANSFORMATIONS DEFINITION

At the core of any bidirectional model transformation, re-
gardless of the direction, is the need of carefully defining when
the information related to an object of the source and the one
related to an object of the target are equivalent. This equiva-
lence relation is usually referred in the literature as consistency
between the two (or more) sources of information [13]. In
the following, we first succinctly describe the laws underlying
our transformation and the formalization of the consistency
relation between source city models and cyber-physical spaces,
then we sketch the algorithms implemented for consistency
enforcement in our framework and lastly discuss some issues
and limitations of the putback strategy in our approach.

A. Consistency Specification

Bidirectional transformations (BX) is a development
methodology for maintaining the consistency relation between
models, which can be expressed in terms of lenses [13]. A lens
consists of a pair of transformations get and put [14]. The
forward transformation get(s) is used to produce a target view
v from a source s, while the putback transformation put(s, v)
is used to reflect updates on the view v to the source s. We
talk about asymmetric lenses when the transformations take
place between two models where one side, which is called the
source, has more information than the other, which is called
the view. A pair of get and put should be well-behaved, in
the sense that it satisfies the following round-tripping laws:

put(s, get(s)) = s GETPUT
get(put(s, v)) = v PUTGET

The GETPUT property requires that no change of the view
shall be reflected to no change of the source, while the
PUTGET property requires all changes in the view should be
completely reflected to the source so that the changed view can
be computed again by applying the forward transformation to
the updated source.

Concerning the models we investigate, the consistency re-
lation can be formally specified in the following way; ∀s, s′
elements of the CityGML model, ∀r relationship defined in



the CityGML ADE and ∀v, v′ nodes of the bigraph, we can
say that s and v having the same keys (key(s) = key(v)) are
synchronized (s 
 v) if and only if, the following conditions
hold:
A.1 instanceOf (s, CityObject) ∧ instanceOf (v ,Node)
A.2 isContained(v, pv) → childOf (s, ps) ∧ ps 
 pv
A.3 isLinked(v, v′) → holds(r , s, s ′) ∧ s ′ 
 v ′

The predicate istanceOf guarantees an object is of the
specified type, childOf expresses the parent-child relationship
of CityGML elements, while isContained and isLinked rep-
resent respectively containment and links of the bigraph. holds
describes both the presence of a relationship in the ADE and
that its application-related meaning, somehow, holds.

We may say that a source model is place-consistent with
respect to a view model if both A.1 and A.2 are satisfied.
Likewise, we may say that it is link-consistent (w.r.t. a view
model) if A.1 and A.3 are satisfied. When a source model
is place-consistent and link-consistent at the same time, then
it is consistent (i.e., the models are synchronized). Place-
consistency has been fully formalized and therefore it can
always be checked without ambiguity. This means that in no
case we can have e.g., a road inside a building or similar
irregular cases which are not allowed by the CityGML specifi-
cation. On the other hand, link-consistency cannot be in prin-
ciple solved unambiguously, since it is application-specific.
This not-completely formalized approach is not new in BX,
since, in some cases, local correctness checks (sometimes also
called black-box operations) are needed in order to achieve
consistency [15].

B. Consistency Enforcement

The three conditions described are enforced by our frame-
work in the same order as presented. Algorithms 1 and 2
show the functions used for the putback transformation, which
take a CityGML object and a node of the CPSp as input
and return an updated version of the original entity within
the CityGML description – the interested reader can refer to
the accompanying artifact for complete implementations and
further technical details. The corresponding functions for the
forward transformation are automatically generated.

Our implementation has been developed in the BiGUL
language, a putback-based bidirectional transformations lan-
guage [16]. The strength of BiGUL, in comparison to other BX
approaches, relies on the fact that only the putback direction
has to be explicitly developed, as the forward direction is
automatically derived by the language. This results in more
flexibility for the modular design adopted, as, to support new
application domains, it suffices to just change the Application
Policy, a specific component to which Section IV-C is devoted.

Algorithm 1 exhibits the first stage of the synchronization
logic, which, starting from the root of the city model and from
the outermost node of the bigraph, traverses the two structures
and repairs the differences by adding or removing the needed
nodes at the correct position of the city model. Thus, at the
end of its execution, the source model will be place-consistent
(i.e., conditions A.1 and A.2 must hold).

Algorithm 1 Containment Graph Syncing

function syncCont(s :: CityObject, v :: Node)
for all o ∈ children(s) do

if key(o) /∈ children(v) then
REMOVE(s, o)

else
syncCont(o, findNode(key(o), children(v))

end if
end for
for all n ∈ children(v) do

if key(n) /∈ children(s) then
ADD(s, n)

end if
end for
return s

end function

Algorithm 2 Link Graph Syncing

function syncLinks(s :: CityObject, v :: Node)
rs := getRelsWith(s)
ls := getLinksWith(v)
for all l ∈ ls do

if key(l) ∈ rs then
rel := findRel(key(l), ls)
for all n ∈ nodes(l) do

if key(n) /∈ rel then
UPDATE(n, ls)
break

end if
end for

else
UPDATE(n, ls)

end if
end for
loop on ade relationships()
repeat syncLink() on children
return s

end function

Conversely, Algorithm 2 describes the second stage of the
synchronization. It also starts from the root of the two models,
but it makes the assumption that the model is place-consistent,
and therefore has the only goal of repairing relationships
between the objects. It loops on the bigraph links and checks
if the corresponding relation exists. If this is the case, a
further check has to be done to verify that the relationship
and the link reference the same elements. When these checks
fail, a repairing procedure updates the source element. The
same logic is mapped to the children nodes (the same in both
models), until the source model is link-consistent (i.e., A.3
holds).

Lastly, in both Algorithms 1 and 2, procedures in uppercase
represent Application Policy actions, which play an important
role in the transformation and are hence analyzed in the next



section. Illustrated functions highlight the main aspects of
the effective transformations. For more details, the interested
reader can refer to Section V and the accompanying artifact.

C. Dealing with Domain-Specifics

The algorithms previously introduced have been designed
with the goal of satisfying the consistency conditions.
However, condition A.3 is not completely formalized, as
application-specific requirements are, in general, unknown.
This is because in principle, the reification strategy for new
or removed objects may greatly vary depending both on the
purpose of the specific object and on application scope and
requirements.

Application Policy is the component appointed for ulti-
mately verifying that task. Since different applications are
likely to require different policies, application policy is an
external component, interacting with our framework through
clearly scoped interfaces called actions. Actions can access a
limited set of information in order to achieve their goal, and
they are required to produce an output that does not break
previous assumptions.

The following actions have been defined:
• ADD(s :: CityObject, v :: Node) :: CityObject,

which is bound to generate missing objects of the source.
To that extent, it has access to all the information avail-
able from the parent of the target object. It is also allowed
to change its actual representation (this is needed in some
applications such as keeping spatio-semantic coherence)
and it must return a new child having the key and type
provided by the respective bigraph node.

• REMOVE(s :: CityObject, v :: Node) :: CityObject,
which symmetrically to ADD has the purpose of removing
extra objects from the source. It has access to the same
information with the same constraints, albeit in this case
it only returns the updated representation of the parent.

• UPDATE(s :: CityObject, v :: Node) :: CityObject

is the most general action, responsible for both updating
ADE relationships and potentially changing the represen-
tation of the current object. The problem of correctly
reflecting a set of links may be very hard to solve
in general. For this reason, our framework makes two
simplifying hypotheses. Firstly, we assume that a change
in a relationship (or the definition of a new one) can
be fully expressed in terms of separated updates to the
objects corresponding to the different nodes of a link.
Moreover, we assume that the information required to
address this task is limited to the subgraph of nodes and
links related to the current one.

To understand the generality and thus the complexity inher-
ent in UPDATE, consider a scenario in which we have two
touching buildings, A and B in our cyber-physical space.
A reasonable change could be, for example, to remove the
touching relation between them and add a new one between B
and C. Such an edit could be reflected in the original model
in many different ways: a feasible result could be to just
change the position of those objects. Nevertheless, another

option could be to change the position of all the objects in the
city, in order to satisfy the new requirement. Our framework
can currently only deal with cases of the former, since the
latter changes the model so significantly that it results in
a completely different one, potentially triggering an endless
loop of breaking-repairing operations in other areas of the
model. The extent to which both these interfaces and their
underlying assumptions are limiting is still a matter of active
investigation.

V. TOPOCITY BX FRAMEWORK

In the previous section we presented the laws and the
defined consistency relation, together with algorithms for
guaranteeing them, as long as some domain-specific aspects
and assumptions are met. To provide concrete support for
our model transformation framework, we realized TOPOCITY,
a prototypical tool implemented in Haskell, which is freely
available for use1. TOPOCITY’s main components are shown
in Figure 3; its modular design allows for external component
development and integration.

 
CityGML 

+ 
ADE 

 
Cyber-

physical 
model 

HXT 
XML Parser 

citygml4hs 
Data-binding 

Abstraction & 
Reification
Interface 

Place-Graph BX 
BiGUL Program 

Link-Graph BX 
BiGUL Program 

Application
Policy 

Topocity framework

Figure 3: Combined view of architecture and dataflow of
TOPOCITY. Dotted boxes represent external components.

The functionality of TOPOCITY revolves around two mod-
els, a source CityGML description, and a view, which is
the CPSp model. The HXT component has been adopted for
standard I/O operations like loading, parsing and storing the
XML-based CityGML files. Auxiliary data-binding operations
are supplied by the citygml4hs component implemented on
top of HXT, providing a typed interface among data manipula-
tions, which gives the capability to rely on type checking. The
Abstraction & Reification interface is the software component
delegated to deliver a common representation of citygml4hs
types, so that more generalized BX could be defined on top of
them. The Place-Graph BX and Link-Graph BX components
make use of BiGUL primitives to implement Algorithms 1

1 TOPOCITY– https://topo.city



and 2 respectively, while the Application Policy refers to the
actions presented in Section IV-C.

To use TOPOCITY in practice, one follows four progressive
steps:

1) Loading the source model (which is the pair of a
CityGML and CityGML ADE description) by calling e.g.,
load(city.gml, ade.gml).

2) Generating a CPSp target model (i.e. perform the get
transformation) by simply calling get(source).

3) Generating an updated source model (i.e. perform the
putback transformation) by calling put(source, view).

4) Storing the new source model in a file by calling
store(filename.gml).

In addition, we make available concrete analyzable models
derived by TOPOCITY from real city models, obtained from
publicly accessible repositories2.

VI. EVALUATION: USE CASES

Our contribution consists of a technical framework im-
plemented with formal programming techniques to support
model-based engineering of space-dependent systems. To pro-
vide concrete tooling for our framework, TOPOCITY is based
on BiGUL [16] and supports CityGML descriptions. The target
models are graph-based and enjoy formal semantics [17].
Synchronizations between CityGML source models and tar-
get models are well-behaved and consistent as described in
Section IV. Thereupon, we evaluate our approach over two
exemplar cases where such bidirectional transformations can
be used for engineering city space-intensive systems:
• During system development, analysis may be sought as

part of an exploratory design cycle. In such a case,
supporting validation is crucial. To this end, we demon-
strate how an analyzable model can be automatically
derived. TOPOCITY’s synchronization facilities ensure
that any changes on the CityGML spatial domain model
are reflected to the analyzable model. To illustrate our
approach, we showcase transformations upon a exemplar
problem used in the civil engineering domain and sci-
entific literature which concerns construction site layout
planning: a tower crane positioning problem.

• During system operation, keeping an analyzable model
alive can be instrumental in capturing contextual informa-
tion received through monitoring. Analysis performed on
this model can provide insights or serve as input to plan-
ning processes. Changes must be be reflected back to the
source spatial model, to be visualized or combined with
other domain-specific models that are interoperable with
CityGML. TOPOCITY ensures that the updated analyzable
model is consistent with the source CityGML model, by
accordingly reflecting changes back. To illustrate such
activities, we consider emergency response in a city.

The cases we consider for our evaluation purposes are model
problems: they are representative cases where bidirectional
transformation can play a big role in engineering an overall

2Topological city models repository – https://topo.city.

space-intensive system. We stress that the transformations in-
herent in the model problems presented are performed on real
CityGML models obtained from public repositories, namely
a district of Remscheid, North Rhine-Westphalia, Germany
and Flat Iron Street in New York, USA. We conclude with
a discussion.

A. Facilitating System Design: Tower Crane Positioning

Proper optimization of construction sites layout is key to
efficient construction activities. Before construction starts, site
layout planning provides the necessary equipment and tempo-
rary facilities for the construction process, including allocation
and dimensioning of elements like tower cranes, containers or
storage areas. Decisions taken during this planning phase have
direct impact on cost development and occupational safety
on site during construction. Positioning of tower cranes is an
important exemplar [18], [19]. Recent literature has provided
techniques to automate the solution of this task, where two
critical issues have been identified: (i) the lack of a simple
but formal language capable of expressing rules, standards
and best practices to check a building model [20], and (ii)
the absence of tools able to perform this kind of operations
by exploiting BIM/GIS descriptions like CityGML models, so
that meaningful solutions can be found before implementation
takes place [19]. In the following, we demonstrate how a
flexible solution can be designed in which our framework plays
a central role.

We consider an hypothetical construction site to be placed in
a district of the city of Remscheid, North Rhine-Westphalia,
Germany. For the real CityGML models we rely on North
Rhine-Westphalia open data [21] – the linking structure related
to tower crane positioning, is designed ad-hoc, since this step
could be easily generalized and reproduced by modern user-
guided CAD software [22]. Figure 4 shows the most relevant
part of the model generated by our framework; an extra object
and extra links are shown, corresponding to the changes made
to the cyber-physical space in order to elicit the topological
requirements for the new tower crane. Advanced analysis
and model processing to generate such changes can take
into account topological information in the analyzable model,
such as proximity of construction site elements or complex
relationships in the space layout, positioning the crane in
a manner that satisfies some occupational safety or optimal
placement requirements. As we are concerned with model
transformations only, we consider such reasoning facilities as
out of scope for this paper.

Once the target model is updated reflecting some reasoning
(e.g., identifying the optimal position of the crane), changes
have to be reflected back to the original model. To this
end, TOPOCITY takes care of identifying changed objects
and prompts the Application Policy to provide the 3D shape
of the tower crane and spatial coordinates. For our case
study, this was a fixed position, but a policy can specify
arbitrary alternatives, from random to user-defined positioning,
depending on the kind of links defined. Once those are given,
TOPOCITY identifies the place in the original source hierarchy



CityModel 
LoD2_369_5668_1_NW 

Building 
DENW27AL20000wlt 

Building 

TowerCrane1 

Building 

DENW27AL20000wJJ 

reachable
BuildingPart 

1479134954866_46509971 
WallSurface 

d56a5f2b-...-143fd9901bfb 

BuildingPart 

f3cd0cc5-...-86faa1bcdf63 

BuildingPart 

1479134954866_46509970 

to
uc
hi
ng

BuildingPart 

cf1845e6-...-7f0c8b7eb240 

WallSurface 

d5461f2a-...-aaedbbff8a7f 

WallSurface 
59681a48-...-be92fc6a7eb1 

touching

reachable

rea
cha

ble

*
*
*

*

*

Building 
DENW27AL20000xHv *

*

WallSurface 
b7e104a8-...-b02b1bc07d8c 

*

Figure 4: Fragment of the view model derived from the
CityGML description of a district in Remscheid. Nodes are ID-
Type pairs as they appear in the real CityGML model. Presence
of other, not shown, elements of the model is indicated by *.

to arrange the new objects and reifies the model back again
to the CityGML description.

Figure 5 shows a fragment of the original model and the
final result as visualized CityGML descriptions. Note how
certain reachability links between edges of three buildings are
additionally defined, supposing these are buildings of interest
for the construction site (Figure 4).

B. Facilitating System Operation: Emergency Response

Technology adoption for fast emergency response in urban
environments is gaining increasing attention: technological
advances may in fact provide new human-computer interaction
capabilities, allowing for effective real-time response. Con-
sider the classical setting [23] where a disaster scenario is
replicated in the Flatiron Building area of New York [24],
with several relief entities (e.g. rescue teams, ambulances or
Unmanned aerial vehicles – UAVs) dispatched throughout the
area to locate and rescue victims [4], [25].

The agents have initial knowledge of the environment, given
by the original model of the city. However, in such a scenario,
we expect the model to be updated regularly, as soon as
new information is acquired by monitoring processes. Agents
must dynamically adjust search operations and rescue prior-
ities through some criteria such as the likelihood of finding
victims in an area or current disaster propagation. In order
to perform such tasks, which largely amount to planning and
surveillance [26], an actionable representation of the city can
be a hypergraph in which nodes represent city objects, while
links represent safe connections between multiple nodes. This

(a) Area without a tower crane (before).

(b) The crane is placed automatically via a put to the source model (after),
reflecting its addition on the view model.

Figure 5: Placement of a crane entity on the derived, ana-
lyzable model (Fig. 4) entails its automatic reflection on the
source city model (Fig. 5a), resulting in Fig. 5c.

typically occurs within a Monitor-Analyze-Plan-Execute loop,
as this is an instance of a self-adaptive system. Agents monitor
the area and update the model with the information they
collect about safety of streets and buildings, while others escort
civilians from the disaster area to hospitals. Path planning
takes place based on analyzed monitored information upon
the model, with the purpose of e.g., maximizing the number
of victims rescued. Both the planning and monitoring facilities
are not relevant for the synchronization of the models and they
are therefore out of the scope of our research.

In our approach, we define and extract a CityGML ADE
from the city model and populate it with real-time information,
with the goal of making the safe distance relation between city
objects explicit. TOPOCITY provides the hypergraph exploited
by the agents, which is updated at runtime as the monitoring
process generates new information. Figure 6 shows the aerial
view of the Flat Iron Street area of New York as described by
the CityGML model (6a), and the corresponding analyzable
view (6b). A viable safe path for the city area is shown, both
in the original model and in the analyzable one.

C. Discussion

We have demonstrated that, by using our framework, bidi-
rectional model transformations upon real spatial descriptions
can be performed, keeping analyzable models and CityGML
descriptions synchronized. The two exemplar cases presented
are different, as (i) they target different models and different
levels of details within CityGML and (ii) they showcase uses



(a) The area nearby Flat Iron Street considered for our analysis.

CityModel 
FlatIron_Area 

Track - Interior_Sidewalk 
83670616...e778173f0b41 

TrafficArea 
tid_83670616...e778173f0b41 

Square 
e200fc63...6e7afa6f4d47 

TrafficArea - Plaza 
de8e831e...39b38a6a10c7 

Road
W 24 St. - ec5035ff...133d90f3d653

AuxiliaryTrafficArea
 W 24 St.- 7c7648ad...6239ad608f1a

TrafficArea - Plaza 
873b2c03...c23c1ccee3f7 

AuxiliaryTrafficArea
 W 24 St.- 2b103c87...805d7c781d70

AuxiliaryTrafficArea
 W 24 St.- 64c8f6d3...def94b344c43

Road 
8 Av. - b5562641...c3202773 

TrafficArea 
8 Av.- ca8e6eac...435fe73c0 

safePath

sa
fe
Pa

th

sa
fe
Pa

th

safePath

safePath

*
*

*

(b) Fragment of the corresponding view generated.

Figure 6: Runtime safe path analysis models. The source (a)
is transformed into the analyzable model (b). The highlighted
area in (a) represents the safe path illustrated in (b). Nodes are
ID-Type pairs as they appear in the available CityGML model
of New York; the presence of other elements in parts of the
model (not shown) is indicated by *.

of the framework for both systems design and operation.
Hence, we believe they show the potential of our approach.

From our experience within model transformations of
CityGML descriptions and considering the perspective of prac-
titioners aiming to use our model-based engineering approach,
interfaces and tooling integration might significantly support
the design cycle. Moreover, we defer a performance evaluation
of the transformations developed for future work, as our proof-
of-concept tooling is in prototypical state.

A significant flexibility constraint has been briefly pre-
sented in Section IV-C. As anticipated there, links can be

a very powerful medium for expressing arbitrarily complex
configurations: in some convoluted scenarios, a putback to the
original model may not be feasible or even worse, it may
result in changes affecting a vast number of features, essen-
tially resulting in a different model. We believe our solution
addresses a relatively general set of meaningful applications,
but further research on application scenarios may result in
more precise understanding of practical limitations. Moreover,
a considerable problem in making our framework an effective
tool for practical use is the absence of any public ADE data
or generation tool. Nonetheless, we believe this limitation
may soon be overcome, thanks to the growing interest in the
CityGML standard by domain experts [11].

An important aspect in BX design is the level of automation
desired – ideally, one would expect to be able to choose an
Application Policy that meets certain needs, plug it in our
framework and use the combinations of these programs with
no extra effort, regardless of the application context. However,
our experience shows that some very complex CityGML
features containing highly varying objects, still need some
minimal custom bridging code to build the transformation.
Tackling this problem in a generic manner requires extending
the approach, something we identify as future work.

It is worth mentioning that [20] already solves the tower
crane problem of Section VI-A by developing a plugin for
Autodesk Revit –an established tool in building and urban
design. However, as pointed out by the authors, only a small
set of pre-defined simple rules are allowed, implemented ad-
hoc for this purpose. In addition, [19] shows that GIS-BIM
models (like CityGML) have enough information for treating
the problem in terms of geometrical and topological analysis.
Our approach, on the contrary, is general enough to allow
for complex rules and user-defined customization if a proper
Application Policy is set in place.

The two cases considered for our evaluation purposes
are model problems obtained from domain-specific literature,
highlighting the use of bidirectional transformations within our
framework for model-based engineering of space-dependent
systems. We believe that the strength of our approach is
twofold: firstly, adaptability is exhibited, since integrating dis-
parate application-related sources of information still result in
the same analyzable model; secondly, providing an automatic
way to obtain an abstract model where verification can be
performed, can lead to the development of more sophisticated
analysis-based workflows.

VII. RELATED WORK

We have presented a novel technical framework to engineer-
ing bidirectional model transformations of city models, offer-
ing assurances on correct and well-behaved transformations.
Consequently, we classify related work into three categories.
First, we discuss the state-of-the-art in model-based analysis
of physical spaces, positioning our work. Then, we review
transformation techniques and theoretical foundations on con-
sistency. Lastly, we discuss related engineering approaches



from the domain of analyzable models (i.e. cyber-physical
systems that build upon spatial representations).

Interest on model-based analysis of cities has been con-
sistently growing in recent years. The adoption of CityGML
for building modeling purposes has been studied extensively
lately [27]–[29] and the integration of classical BIM features
has been a leading design goal [30] in defining CityGML
3.0, to be soon released [5]. In addition, city-based analysis
is being developed in all kinds of application scenarios;
most notably, recent efforts have been on traffic noise analy-
sis [31], photovoltaic potentiality analysis [32], urban emission
measurements analysis [33] and ubiquitous robot networks
management [34]. Official city datasets are increasing, with
recent public effort from Turkey [35], Singapore [36] and
Germany [21] among all.

Consistency between models has been of interest for many
years, historically originating from the view-update problem in
database research [37], [38]. It has become relevant within BX
and, in most recent approaches, it has emerged as a means for
automatic generation of lenses [15]. BiGUL is a formally ver-
ified putback-based bidirectional programming language [16].
Alternative relevant approaches based on different types of
lenses are QVT [15], Triple Graph Grammars [8] and Edit
Lenses [39].

Different forms of graphs as formal models of static rep-
resentations of buildings or cities have been proposed in di-
verse fields such as architectural informatics [40] or computer
graphics [41], with different objectives. Several approaches
target case-based reasoning [42] in the architectural domain.
However, actionable and analyzable models are necessary for
advanced design and operation of overall space-dependent
systems [1]. In [40], a topology of spatial configurations
is extracted from building information models as well as
handwritten architectural sketches [43] and represented as
graphs. Within the Internet of Things, analyzable models are
extracted from trajectories and reasoned upon with a spatial
logic [44]. Focusing on security reasoning while aiming at
early design phases, Porter et al. [45] propose a method and
heuristics to discover security threats on building specifica-
tions via simulation. Analyses such as similarity checking are
performed based on graph matching techniques [46]. Forms
of graphs representing topology of space are highly useful.
To this end, our target analyzable models are graph-based
and readily analyzable with a variety of approaches [47].
The notion of a cyber-physical space refers to a composite
model able to capture complex relations of human, cyber
and physical entities, which may span physical or computa-
tional barriers [48]. Such a model may be obtained from a
physical model and enriched with formally-specified dynamics
capturing possible ways it can change [49]. Spatio-temporal
model checking of evolving cyber-physical spaces can then
be considered [4], since topology can provide a system with
awareness of multiple characteristics [50].

VIII. CONCLUSIONS AND FUTURE WORK

Motivated by model-based design and operation of space-
dependent systems, we have presented a technical framework
enabling synchronizations between city spatial domain models
and graph-based analyzable models. Synchronizations pro-
duced are automatically derived, correct and well-behaved.
The spatial domain models we have considered are based on
CityGML, as widely used by practitioners to represent city or
building spaces. The analyzable models we targeted are for-
mally modeled topological structures –cyber-physical spaces–
enjoying well-defined semantics, where formal reasoning can
be performed. The novel bidirectional reflection facilities we
have provided for spatial CityGML and analyzable models can
be readily used to (i) derive real models from spatial models
occurring in practice and (ii) instrument modeling and analysis
facilities for cyber-physical systems. We have further provided
concrete implementations of the algorithms presented in the
form of an accompanying artifact.

The presented approach and accompanying artifact is merely
the first step – considering the perspective of practitioners
aiming to utilize such BX facilities, we have identified several
research directions that could be pursued. Interfaces and
toolchain integration would go a long way in supporting
design. This goes hand in hand with tackling practical issues of
CityGML, such as public ADE data or generation facilities,
to ensure effective tooling for practical usage. The class of
synchronization problems addressed by our study must be clar-
ified: our framework’s main hypothesis is the unchangeability
of the consistency relation between the source and the view.
An alteration to the latter may result in massive rewrites of
the core of our framework; this is, in fact, a common problem
of solutions grounded on bidirectional transformations. It is
therefore apparent that applications in which the consistency
between the models is a relevant source of change cannot ben-
efit significantly by our work. Regarding theoretical aspects,
we aim to investigate pluggable custom application policies
and support arbitrary CityGML features. Lastly, an aspect
that can be further studied is relaxing the hypothesis of the
unchangeability of the consistency relation between the source
and the view in our transformations.

REFERENCES

[1] Christos Tsigkanos, Timo Kehrer, and Carlo Ghezzi. Architecting
dynamic cyber-physical spaces. Computing, 98(10):1011–1040, 2016.

[2] Thomas Kolbe, Gerhard Gröger, and Lutz Plümer. Citygml: Inter-
operable access to 3d city models. In Geo-information for disaster
management. Springer, 2005.

[3] Chuck Eastman, Charles M Eastman, Paul Teicholz, and Rafael Sacks.
BIM Handbook: A Guide to Building Information Modeling for Owners,
Managers, Designers, Engineers and Contractors. J.W & S, 2011.

[4] Christos Tsigkanos, Timo Kehrer, and Carlo Ghezzi. Modeling and
verification of evolving cyber-physical spaces. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, 2017, pages 38–48, 2017.

[5] Open Geospatial Consortium. City Geography Markup Language
(CityGML) Encoding Standard, version: 2.0.0. http://www.opengis.net/
spec/citygml/2.0, 2012.

[6] G.A. van Nederveen and F.P. Tolman. Modelling multiple views on
buildings. Automation in Construction, 1(3):215 – 224, 1992.



[7] CityGML open data initiatives. http://www.citygmlwiki.org/index.php?
title=Open Data Initiatives, 2017.

[8] Frank Hermann, Hartmut Ehrig, Fernando Orejas, Krzysztof Czarnecki,
Zinovy Diskin, and Yingfei Xiong. Correctness of model synchroniza-
tion based on triple graph grammars. In MoDELS, 2011.

[9] Filip Biljecki, Jantien Stoter, Hugo Ledoux, Sisi Zlatanova, and Arzu
ltekin. Applications of 3d city models: State of the art review. ISPRS
International Journal of Geo-Information, 4(4):2842–2889, 2015.

[10] Sameer Saran, Kapil Oberai, Parag Wate, Amol Konde, Arnab Dutta,
Kavisha Kumar, and A. Senthil Kumar. Utilities of virtual 3d city models
based on citygml: Various use cases. Journal of the Indian Society of
Remote Sensing, 46(6):957–972, Jun 2018.

[11] Filip Biljecki, Kavisha Kumar, and Claus Nagel. Citygml application
domain extension (ade): overview of developments. Open Geospatial
Data, Software and Standards, 3(1):13, Aug 2018.

[12] Robin Milner. The Space and Motion of Communicating Agents.
Cambridge University Press, 2009.

[13] Jeremy Gibbons and Perdita Stevens, editors. Bidirectional Transforma-
tions. Springer International Publishing, 2018.

[14] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Ben-
jamin C. Pierce, and Alan Schmitt. Combinators for bidirectional tree
transformations: A linguistic approach to the view-update problem. ACM
Trans. Program. Lang. Syst., 29(3):17, 2007.

[15] Perdita Stevens. Bidirectional model transformations in qvt: semantic
issues and open questions. Software & Systems Modeling, 9(1):7, 2010.

[16] Hsiang-Shang Ko, Tao Zan, and Zhenjiang Hu. Bigul: a formally verified
core language for putback-based bidirectional programming. In PEPM,
2016.

[17] Robin Milner. Bigraphical reactive systems. In Kim G. Larsen and
Mogens Nielsen, editors, CONCUR 2001 — Concurrency Theory, pages
16–35, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[18] Mohammed Adel Abdelmegid, Khaled Mohamed Shawki, and Hesham
Abdel-Khalek. Ga optimization model for solving tower crane loca-
tion problem in construction sites. Alexandria Engineering Journal,
54(3):519 – 526, 2015.

[19] Javier Irizary and Ebrahim Karan. Optimizing location of tower cranes
on construction sites through gis and bim integration. Electronic Journal
of Information Technology in Construction, 17:351–366, 09 2012.

[20] Kevin Schwabe, Markus Knig, and Jochen Teizer. Bim applications of
rule-based checking in construction site layout planning tasks. 07 2016.

[21] Nordrhein-westfalen open geographic data. https://www.opengeodata.
nrw.de/produkte/geobasis/3d-gm/, 2017.

[22] Revit products 2018 documentation - constraints definition
feature. https://knowledge.autodesk.com/support/revit-products/
learn-explore/caas/CloudHelp/cloudhelp/2018/ENU/Revit-Model/files/
GUID-4AD7D371-F757-4BFF-9F3C-8321A77D3A02-htm.html, 2018.

[23] Mei-Po Kwan and Jiyeong Lee. Emergency response after 9/11: the
potential of real-time 3d gis for quick emergency response in micro-
spatial environments. Computers, Environment and Urban Systems,
29(2):93 – 113, 2005.

[24] 3d city model of new york city - tum. https://www.gis.bgu.tum.de/en/
projects/new-york-city-3d/, 2015.

[25] Wesley DeBusk. Unmanned Aerial Vehicle Systems for Disaster Relief:
Tornado Alley, chapter Unmanned Aerial Vehicle Systems for Disaster
Relief: Tornado Alley. Infotech@Aerospace Conferences. American
Institute of Aeronautics and Astronautics, Apr 2010. 0.

[26] Christopher M. Eaton, Edwin K. P. Chong, and Anthony A. Maciejewski.
Multiple-scenario unmanned aerial system control: A systems engineer-
ing approach and review of existing control methods. Aerospace, 3(1),
2016.

[27] Junxiang Zhu, Graeme Wright, Jun Wang, and Xiangyu Wang. A critical
review of the integration of geographic information system and building
information modelling at the data level. ISPRS Int. J. Geo-Information,
7:66, 2018.

[28] Ken Arroyo Ohori, Abdoulaye A. Diakité, Thomas Krijnen, Hugo
Ledoux, and Jantien E. Stoter. Processing bim and gis models in
practice: Experiences and recommendations from a geobim project in
the netherlands. ISPRS Int. J. Geo-Information, 7:311, 2018.

[29] Rudi Stouffs, Helga Tauscher, and Filip Biljecki. Achieving complete
and near-lossless conversion from ifc to citygml. ISPRS Int. J. Geo-
Information, 7:355, 2018.

[30] CityGML 3.0 requirements - munich 2013. http://en.wiki.modeling.
sig3d.org/index.php/Workshop Munich 2013, 2013.

[31] Amol Konde and Sameer Saran. Web enabled spatio-temporal semantic
analysis of traffic noise using citygml. 2017.

[32] Nazmul Alam and Volker Coors. Detecting shadow for direct radiation
using citygml models for photovoltaic potentiality analysis. 2013.

[33] Dirk Ahlers, Frank Alexander Kraemer, Anders Eivind Braten, Xiufeng
Liu, Fredrik Anthonisen, Patrick Driscoll, and John Krogstie. Analysis
and visualization of urban emission measurements in smart cities. In
EDBT, 2018.

[34] Yaemi Teramoto, Akiko Sato, Kishiko Maruyama, and Hitoshi Tomita.
Map representation for ubiquitous network robot services. In Proceed-
ings of the Fourth ACM SIGSPATIAL International Workshop on Indoor
Spatial Awareness, ISA ’12, pages 29–32, New York, NY, USA, 2012.
ACM.

[35] S. Ates Aydar, Jantien E. Stoter, Hugo Ledoux, E. Demir Ozbek, and
Tahsin Yomraliolu. Establishing a national 3 d geo-data model for
building data compliant to citygml : Case of turkey. 2016.

[36] K. H. Soon and V. H. S. Khoo. Citygml modelling for singapore 3d na-
tional mapping. ISPRS - International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, XLII-4/W7:37–42,
2017.

[37] F. Bancilhon and N. Spyratos. Update semantics of relational views.
ACM Trans. Database Syst., 6(4):557–575, December 1981.

[38] Terrence W. Pratt. Pair grammars, graph languages and string-to-graph
translations. Journal of Computer and System Sciences, 5(6):560 – 595,
1971.

[39] Daniel Wagner and Nate Foster. Symmetric edit lenses : A new
foundation for bidirectional languages. 2014.

[40] Christoph Langenhan, Markus Weber, Marcus Liwicki, Frank Petzold,
and Andreas Dengel. Graph-based retrieval of building information
models for supporting the early design stages. Advanced Engineering
Informatics, 27(4):413–426, 2013.

[41] Raoul Wessel, Ina Blümel, and Reinhard Klein. The room connectivity
graph: Shape retrieval in the architectural domain. In The 16-th Intl Conf.
in Central Europe on Computer Graphics, Visualization and Computer
Vision, 2008.

[42] Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational
issues, methodological variations, and system approaches. AI communi-
cations, 7(1):39–59, 1994.

[43] Sheraz Ahmed, Markus Weber, Marcus Liwicki, Christoph Langenhan,
Andreas Dengel, and Frank Petzold. Automatic analysis and sketch-
based retrieval of architectural floor plans. Pattern Recognition Letters,
35:91–100, 2014.

[44] Christos Tsigkanos, Laura Nenzi, Michele Loreti, Martin Garriga,
Schahram Dustdar, and Carlo Ghezzi. Inferring analyzable models from
trajectories of spatially-distributed internet-of-things. In 1th IEEE/ACM
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS@ICSE 2019, Montreal, Canada, May 25-26,
2019. IEEE Computer Society, 2019.

[45] Stuart Porter, Terence Tan, Tele Tan, and Geoff West. Breaking into
bim: Performing static and dynamic security analysis with the aid of
bim. Automation in Construction, 40:84–95, 2014.

[46] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento.
Thirty years of graph matching in pattern recognition. International
journal of pattern recognition and artificial intelligence, 18(03):265–
298, 2004.

[47] Christos Tsigkanos, Nianyu Li, Zhi Jin, Zhenjiang Hu, and Carlo Ghezzi.
On early statistical requirements validation of cyber-physical space
systems. In Proceedings of the 4th International Workshop on Software
Engineering for Smart Cyber-Physical Systems, ICSE 2018, Gothenburg,
Sweden, May 27, 2018, pages 13–18, 2018.

[48] Christos Tsigkanos, Liliana Pasquale, Carlo Ghezzi, and Bashar Nu-
seibeh. On the interplay between cyber and physical spaces for adaptive
security. IEEE Trans. Dependable Sec. Comput., 15(3):466–480, 2018.

[49] Christos Tsigkanos, Timo Kehrer, Carlo Ghezzi, Liliana Pasquale, and
Bashar Nuseibeh. Adding static and dynamic semantics to building
information models. In Proceedings of the 2nd International Workshop
on Software Engineering for Smart Cyber-Physical Systems, pages 1–7.
ACM, 2016.

[50] Liliana Pasquale, Carlo Ghezzi, Claudio Menghi, Christos Tsigkanos,
and Bashar Nuseibeh. Topology Aware Adaptive Security. In Proc.
of the 9th Int. Symp. on Software Engineering for Adaptive and Self-
Managing Systems, pages 43–48, 2014.


