
POET: Privacy on the Edge with Bidirectional Data
Transformations

Nianyu Li
Key Laboratory of High Confidence

Software Technology
Peking University, China

Christos Tsigkanos
Distributed Systems Group

TU Wien
Austria

Zhi Jin
Key Laboratory of High Confidence

Software Technology
Peking University, China

Schahram Dustdar
Distributed Systems Group

TU Wien
Austria

Zhenjiang Hu
National Institute of Informatics

University of Tokyo
Japan

Carlo Ghezzi
Dipartimento di Elettronica,
Informazione e Bioingegneria
Politecnico di Milano, Italy

Abstract—Comprehensive privacy mechanisms are essential
in the pervasive internet-of-things systems of today, which are
comprised of multiple distributed devices and diverse software
stacks, while located in different legal or administrative domains.
In such systems, often consisting of resource-constrained devices,
guarantees of correctness and conformance to privacy policies is
required, while data need to be synchronized among different
software components. Motivated by the “data protection by de-
sign and by default” principle, we propose a technical framework
to support data synchronization among edge components tailored
for pervasive IoT applications. Our privacy-driven synchroniza-
tion approach is based on a generically applicable privacy model
and able to capture roles and permissions, actions on data,
conditions and obligations that arise in privacy requirements. For
automated and correct reflection of synchronized data among
components, we adopt bidirectional transformations, a mecha-
nism where synchronization between models, consistency, and
well-behavedness are formally guaranteed. Thus, automatically
generated privacy-aware data transformations are correct by
construction. We evaluate POET, our framework and accom-
panying tool with a case study on medical information privacy
and demonstrate its performance in resource-constrained edge
devices.

Index Terms—Bidirectional Transformations, Privacy Models,
Edge Computing, Requirements Assurance

I. INTRODUCTION

The recent evolution towards an increasingly integrated
world has at its basis novel types of pervasive systems
achieved through new technologies and paradigms such as
mobile and cloud computing and Internet of Things (IoT),
inducing systems composed of heterogeneous devices, com-
puting infrastructures and cloud services. The current state-
of-the-art in systematically engineering such pervasive systems
involves architecturally offloading data or control to the cloud.
However, novel functional and non-functional requirements,
including user requirements as well as new laws and reg-
ulations dictate data or computation to be situated locally
near devices. Such requirements may capture diverse system
concerns ranging from performance to security and privacy,
whose satisfaction suggests computing entities architecturally
located near the network edge, closer to the end-devices. Such

edge entities may offer computational, communication and
data resources to local devices [1].

Take privacy [2] as an example. Comprehensive privacy
mechanisms are essential for widespread uptake and accep-
tance of the pervasive systems of today, as the ever-increasing
number of devices collecting (possibly sensitive) data and
interacting with the physical environment, combined with
opaque data handling policies, contribute to a lack of trust.
Hence, privacy emerges as a first-class design goal throughout
the application development lifecycle. The challenge of data
privacy in particular, is to enable utilization of data while pro-
tecting an individual’s privacy preferences and their personally
identifiable information.

Rigorous modeling and precise formalization of privacy
requirements as defined by legislative acts, like the EU General
Data Protection Regulation (GDPR [3]), enables the enforce-
ment of privacy regulations in an information processing sys-
tem. The unambiguous definition of policies allows reasoning
upon them, ensuring compliance to information privacy laws,
generally guaranteeing individuals’ privacy. Recent develop-
ments in legal and regulatory frameworks have intensified
the need for privacy compliance. Legislative acts such as
GDPR [3] (about privacy, data handling and protection),
HIPAA [4] (about medical records privacy) or CCPA [5] (con-
sumer data protection), require enterprises to protect privacy
of their users, by rigorously specifying privacy policies and
ensuring their implementation in their activities.

In this paper, we propose a novel technical framework
to engineer data privacy tailored for the pervasive edge
computing systems of today – POET (Privacy On the Edge
with Transformations). In such systems, often consisting of
resource-constrained devices hosting software components i)
formal assurances of correctness as well as ii) development
support throughout the application lifecycle is required. We
focus on applications’ privacy needs, as they pertain to keeping
data synchronized among software components; data should
always flow between components in accordance to privacy
policies capturing privacy requirements of the system. In our



proposal, we ensure that in software components, changes
applied to remote data are reflected back automatically while
respecting defined privacy policies in the source data, and from
there propagated to other remote data that may also be affected
by the change. Such automated reflection is achieved thanks
to the use of bidirectional transformations [6], a mechanism
where synchronization between models, consistency, and well-
behavedness are formally guaranteed. Model synchronization
entails propagating changes back, while ensuring that changes
made to models are always consistent. Well-behavedness
pertains round-trip laws capturing the properties mentioned
above. Essentially, given the support that POET concretely
provides, transformations reflecting changes to remote data are
generated automatically and correctly.

Our privacy reasoning approach is based on the generically
adopted privacy model of P-RBAC [7], thus able to capture
roles and permissions, actions on data, conditions and obli-
gations that arise in privacy requirements. Privacy-wise, the
cornerstone of our approach is that no data residing in a node
may leave it unless it satisfies the defined policies. In our
POET approach, automatically generated privacy-aware data
transformations are correct by construction. We essentially
implement “data protection by design and by default” (Art.
25 GDPR [3]), by providing facilities for assurances of correct
design – our technical framework ensures that data synchro-
nized always respect privacy policies defined.

The rest of the paper is structured as follows. Section II
gives an overview of our approach, which is situated on the
edge and providing data privacy and synchronization over
a running example used throughout the paper. Section III
describes the privacy model we have adopted to capture
privacy requirements, and Section IV illustrates our privacy-
aware data synchronization mechanism using bidirectional
transformations. Section V presents the runtime deployment of
our approach, while Section VI provides an assessment of the
applicability and realizability of the proposed approach over a
case study of medical data privacy. Related work is considered
in Section VII, and Section VIII concludes the paper.

II. PRIVACY ON THE EDGE

New challenges and opportunities arise as the rapidly grow-
ing cloud computing and pervasive mobile devices, sensors
and networks meet [8]. A pervasive system is generally made
up of different data-handling components, which may be
operated by different users, located in diverse administrative
domains and deployed in the cloud, on local devices or
intermediate computational nodes.

From the data perspective, novel system requirements in-
cluding timeliness, privacy or availability suggest that storage
and computation upon data should be performed at or close
to where sensory or raw data is generated, or where the end
users of the data are situated. Keeping data locally and close
to devices means that they can access it rapidly minimizing
network latency, access it even in case of network disruption
and very importantly, data is within the control of the device.
The latter has implications about privacy, as data ownership

is defined by the source of the data, and shared according to
privacy policies capturing system privacy requirements.

Data obviously need to be synchronized among different
data-handling components. In the modern pervasive environ-
ment data does not only flow from devices to the cloud – data
flows are bidirectional and among different data consumers
and producers [9]. As such, devices should handle privacy
themselves. Another factor in favor of this is trust; although
privacy requirements are known system-wide, a misconfigura-
tion or data breach may allow possibly untrusted devices to
access data that they should not. We advocate that since the
edge is closer to data sources and users, there is an opportunity
for stronger data privacy – something realized by empowering
the edge to actively manage the privacy of data located within
its scope, and automatically synchronize the right subset with
the rest of the system.

Privacy requirements of the system – which can be consid-
ered to be global, as they permeate the whole system – dictate
how and where data should be synchronized. For example,
a privacy policy encoding some requirement conditionally
restricts actions according to different data objects, data users,
or data use purposes. The target is to synchronize data with
other allowed software components, while synchronization
usually means some create, read, update or delete [10] action.
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Fig. 1. Privacy on the Edge with Bidirectional Transformations.

Figure 1 provides a birds-eye view of our approach to
privacy on the edge. At design time, two tasks are performed:
i) privacy requirements are encoded in privacy policies, using
the established privacy formalism of P-RBAC [7], and ii)
source data are interfaced in order to be compatible with our
privacy framework. Output artifacts of those two design time
tasks constitute the input to a transformation engine [11].

At runtime, bidirectional data transformations are then
automatically parameterized with the specified policies cor-
rectly by construction, and placed in edge components han-
dling data within the system. During system operation, the
generated privacy-aware transformations keep data on edge
nodes synchronized with others (as well as any other devices
configured, or the cloud). The essence of our approach is
that this synchronization is formally defined, correct and



always respects privacy policies that govern data located in
the edge node. POET, a prototypical tool realizing our privacy-
aware bidirectional data transformation approach, along with
examples of use and privacy specifications is available [12].

Motivating Example. We consider the case of a distributed
social network, where mobile users through their devices share
privacy-sensitive data. Each user has a laptop computer as well
as mobile devices. Users’ laptop computers contain personal
information, such as their photo albums, which are meant to be
shared only among their friends. A list of friends is maintained
at each laptop. Since users may roam, their IP address may
change – a central cloud service actively maintains the list
of friends as well as their IP addresses. We assume that users
voluntarily share their IP address with the social network [13].
A mobile device may take a photo which is then uploaded on a
user’s laptop for storage – the photo may be explicitly allowed
by the user as to be shared with friends through the social
network the laptops are part of. For example purposes, we treat
users’ laptops as edge nodes – users’ mobile phones (as IoT
devices) may connect to them locally. Privacy requirements of
the overall system dictate the following:

PR1: A mobile device can synchronize photos for the
purposes of storage with a connecting laptop.

PR2: A friend’s laptop can access photos that have been
marked as to be shared by its owner.

PR3: A cloud service may update the IP addresses of
friends on a user’s laptop.

No other information should flow between the various con-
stituents of the system – in other words, PR1-PR3 represent the
only data operations that are allowed to occur in the system.

III. MODELING DATA PRIVACY REQUIREMENTS

As is common in information privacy, for all data collected
and processed, there should be a stated purpose [14]; usage
of data for another purpose than the one it was intended for
must be prevented. This is reflected also in the GDPR Art.
6 – Lawfulness of processing [3]. Moreover, as is typical
in data management, support of classifications identifying
various kinds of data is desired. Support of roles allows
access differentiation between different entities, in line with
security access models. This is because in the context of
an edge-intensive system, differentiation between architectural
entities is desired – privacy-wise, a mobile device is a different
architectural component than a cloud machine. Based on the
above privacy objectives, in the following section we adopt a
privacy model that can support them.

P-RBAC [7] is an extension to the well-known Role-Based
Access Control (RBAC) model [15]. In the classic RBAC
model, a user is assigned to one or multiple roles and each
role has one or multiple permissions. A permission specifies
what action can be performed on which data object. P-RBAC
extends this notion of a permission by adding privacy-related
attributes to it, such as purpose, condition and obligations. The
purpose binds a permission to a range of duties; for example,
sharing purposes may entail different permissions than storage.
A condition specifies under which circumstances a permission

can be granted, for instance, accessing a user’s photo may
require explicit consent from the user. Obligations denote a
set of operations which need to be performed whenever a
permission has been granted, such as adding a log entry.

Our instantiation of P-RBAC for the edge has the following
constituents.

• Privacy Role (R): A type identifier of the architectural
component where data will be contained in, e.g. Laptop
or MobileDev.

• Data Object (D): The data object which a privacy re-
quirement refers to, e.g. Photo.

• Access Purpose (PU): The purpose for which access to
an object is to be allowed, e.g. Storage.

• Access Action (A): The action with which data will be
operated upon, i.e. CRUD actions.

• Access Obligation (O): If permission is granted, opera-
tions that must be additionally performed.

• Access Condition (C): A constraint encoding when a
permission can be granted.

Assuming some architectural entities U, the entity assign-
ment UA ⊆ U× R links entities to one or multiple roles. Each
role r ∈ R has one or multiple permissions, denoted as the per-
mission assignment PA ⊆ R× P . A permission P extends the
action-object privacy permission (a, d) ∈ A× D of RBAC [15]
with an additional condition c ∈ C, purpose p ∈ PU and an
optional set of obligations ob ⊆ 2O . The set of all privacy
permissions is denoted as P ⊆ (A× D)× PU × C××2O. A
privacy permission is then written as (r, ((a, d), p, c, ob)).

Recall our example system, where photos may be shared
among friends for purposes of PU = {Sharing, Storage,
Management}. Roles R = {MobileDev, Laptop, CloudSrv}
operate upon data objects D = {Photo, FriendIPList}
with actions A = {Write, Read, Update}. Access condition
C = {photo shared} needs to be satisfied for a photo to
enable sharing, and an access obligation O = {notify()}1

must be performed whenever friend’s IP addresses are updated.
Privacy requirements PR1-PR3 of the motivating example can
then be formally encoded as the following tuples:

(PR1)
(
MobileDev, (Write, Photo), Storage, true, ∅)

(PR2)
(
Laptop, (Read, Photo), Sharing, photo shared ≡ >, ∅)

(PR3)
(
CloudSrv, (Write, FriendIPList), Management, true, notify()

)
Note that the other side of the data flow interaction such as the
connecting laptop in the privacy requirements will be embeded
in the architectural deployment presented in Section V.

IV. PRIVACY-AWARE DATA TRANSFORMATION

We have seen how data privacy requirements can be
precisely expressed between system nodes according to the
policies in an P-RBAC model. However, a classic problem in
this methodology is how to reflect modifications of one system
component to the others connected to it. If an update is made
to data residing on an edge node, it must be reflected to other
connected edge nodes based on the semantics of the privacy
policies defined. The change must not take place if the policy
does not allow it.

1Obligation procedures operate upon data, are assumed to be application-
dependent and already defined along with privacy policies.



Certainly, one could implement this by hand, by encoding
the transformation algorithms for certain particular data. How-
ever, formal assurances on correctness and well-behavedness
might not be guaranteed:

• Both directions, propagating data to and from the edge
node must be implemented, so that data is synchronized.
This is prone to errors, as the bidirectional transformation
must correctly reflect changed data back and forth.

• Synchronization should occur for every data pair accord-
ing to the privacy policy, while any data format should
be supported.

• Should the need for changing the implemented transfor-
mation arises, development support should aid (correctly)
updating the transformations.

In the following, we illustrate how the above challenges
may be tackled by designing and implementing a well-behaved
bidirectional transformation (BX) for data synchronization,
which correctly by design propagates changes between data
residing in edge nodes in accordance with policies defined in
an P-RBAC specification.

A. Bidirectional Transformation

Bidirectional transformation (BX) [6] is a useful mechanism
for data synchronization, which supports any format data pair
from many different areas including software engineering,
programming languages, databases, and document engineer-
ing. Asymmetric lenses, an influential framework in BX, are
designed for synchronizing two pieces of data where one
side, which is called the source, has more information than
the other, which is called the view. A lens consists of a
pair of transformations get and put [16], [17]. The forward
transformation get(s) is used to produce a target view v from
a source s, while the putback transformation put(s, v) is used
to reflect updates on the view v to the source s. These two
transformations should be well-behaved in the sense that they
satisfy the following round-tripping laws:

put(s, get(s)) = s GETPUT
get(put(s, v)) = v PUTGET

The GETPUT property requires that no change of the view
shall be reflected as no change of the source, while the
PUTGET property requires all changes in the view should be
completely reflected to the source so that the changed view can
be computed again by applying the forward transformation to
the updated source.
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Fig. 2. Privacy-Aware BX overview: After interfacing of source data, the BX
engine utilizes correspondences between items to synchronize structures.

B. Data Interfacing & Preparation

Since data in an edge-intensive application can be of various
types, our aim is providing a privacy-aware mechanism that
is generic – it is applicable to every underlying data that is
sought to be bidirectionally transformed. Thus, the initial step
required by our approach naturally consists of data preparation.

Data preparation, shown in the left part of Fig. 2, aims at
interfacing source data with the privacy-aware data transforma-
tion engine. Since data may be of arbitrary source format, what
is required by the developer is demonstrating a minimal set of
data attributes or fields, that uniquely specify a data item. In
the simplest case, this can be a single attribute. This is essential
for the BX engine to establish correspondences between data
items when performing privacy-aware transformations – es-
sentially, establishing that a certain data field or data attribute
is unique per data record. In practice, this entails showing
how source data items can be represented in (attribute, item)
pairs within the BX engine, where attribute is unique to the
application. For example, this can be a primary key for a record
in a table or a hash value for arbitrary data objects.

Recall our running example, where source data consist of
the users’ photos and the list of friend’s IP addresses. A unique
attribute for a photo –which is typically a binary data item–
can be some unique number (e.g. a UUID) or a bit string
fingerprint from a hash function (e.g. SHA). A list of friend’s
IP addresses would typically contain pairs of a user identifier
(i.e. a nickname or a public key) and an IP address, so the
identifier can be readily used.

C. Implementing Privacy-Aware BX using BiGUL

To realize the privacy-aware BX engine, a pair of trans-
formations between the source and view models need to be
developed. In our case, recall that the forward transformation
get is the data item extraction from the source data which
satisfy the privacy policy. Since get is essentially a projection
of the data based on the policy, its corresponding put is an
information embedding of the view data items into the source
data items which have the same data attributes. Though the
source update ways varies depending on actions denoted in a
policy, the put should always be paired with a get to form a
bidirectional transformation pair satisfying the GETPUT and
PUTGET properties defined previously.

To use BX for our transformations, we need to develop
a pair of transformations between the source and the view
models as shown in the right part of Fig. 2. From a high
level perspective, a transformation function producing a view
V from a source S satisfying a policy (r, ((a, d), p, c, ob))
operates in the following manner:

For every component role r:
For every purpose p:
For every data object o in S which matches d:
→ Yield o if c is satisfied for o.

Its corresponding put transformation should be an embedding
of data view into the source model according to the semantics
of this policy. Generally, privacy goals are achieved due to



the following two points; first, the view always contains the
information allowed “to go out” of a node. Second, the BX
framework guarantees that one cannot get additional (i.e.
private) information from the source by modifying the view.

The transformations get and put could be manually im-
plemented. Although this solution provides the programmer
with full control in two directions and can be realized using
standard programming languages, we i) require formal assur-
ances of correctness of the get and put transformations and
ii) desire to minimize the maintenance effort required to keep
the consistency between them when one is changed. Even a
small modification to one of the transformations would require
redefinition of the other as well as a new well-behavedness
proof.

In this paper, we adopt BiGUL [18], a putback-based
bidirectional programming language, where one is only re-
quired to implement the put transformation instead of both
get and put, to implement the data synchronization above.
This is based on the fact that get is uniquely determined by
put based on well-behavedness [19]. In BiGUL, once a put
transformation is given, the corresponding get transformation
can be automatically derived for free. We will not dive into a
detailed explanation of the implementation of put in BiGUL,
but rather we give a flavor of it through the following fragment,
which describes how updating a data record with the privacy-
aware BX engine occurs.

datasyn :: BiGUL Record Record
datasyn = $(update

[p| Rcd attr item |]
[p| Rcd attr item |]
[d| attr = Skip; item = Replace |])

In the above functional program fragment, datasyn uses
a view of type Record to update a source of the same type,
where a simplified data record here is internally represented
by (Rcd attr item). The definition body of datasyn states
that the source and view should be of the same form of
(Rcd attr item), and that attribute in the source should
be unchanged (via Skip), the item in the source should be
replaced by that in the view (via Replace). For example,
given the source (Rcd ”photoName” ”family”) and the
view (Rcd ”photoname” ”parents”), the updated source
via get shall be (Rcd ”photoName” ”parents”) with an
unchanged attribute and an updated item value. Interestingly,
from this put, BiGUL can automatically derive the get, which
is exactly the semantics of generating view satisfying round-
trip properties. The interested reader is referred to [20] for
more details on the underlying mechanism of BiGUL.

The above mechanisms are encapsulated in two components
of POET: a Privacy Governor, responsible for implementing
P-RBAC, and a BX engine parameterized with the spec-
ified policies based on BiGUL responsible for generating
the appropriate view and updating the source. Our prototype
implementation is available in accompanying material [12].

D. Propagating Partial Changes

Naturally, for a pair of edge nodes it is not necessary
that one node contains all the data of the other one. For
our running example for instance, data in a user’s laptop
consists of photos and IP addresses, while her mobile device
may include additional personal information. Namely, data
sources are not self-contained between each other, thus the
BX asymmetric lenses framework is not suitable in this case.
Intuitively, the data fragment corresponding to the photos can
be treated as intermediate data for PR1, as the privacy policy
explicitly specifies which data object can be operated upon.
Such intermediate data with less information than the view
component, constitute two pairs of asymmetric lenses with
the data in the edge node.
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Fig. 3. Bidirectionally propagating partial changes between two edge nodes.

Concretely, the process of partial change propagation be-
tween two nodes consists of the following steps which are also
illustrated in Fig. 3. We demonstrate the change propagation
between two nodes, Edge Node 1 (E1) and Edge Node 2
(E2) with a privacy policy (r, ((a, d), p, c, ob)). To simplify
presentation, we assume that E2 has the role of r and needs
to comply with the policy. Nodes E1 and E2 are connected
in deployment and are able to synchronize data. For r, if E1
contains the data object d of the policy:

1) An intermediate data view is produced via the get
transformation from the source residing in E1 (Step 1
in Fig. 3).

2) The source in E2 is updated via the put transformation
based on the generated view in Step 1 and its previous
source (Step 2).

3) A change is made to the new source E2 (Step 3); it
should be reflected back to E1. Obligation o is executed.

4) The projection of a new view is triggered (Step 4) by
the change in Step 3.

5) The put transformation is executed to generate a new
source on E1 (Step 5) – the new source is consistent
with the new view while retaining other information of
the original source.

Note that these get and put transformations are complying
with action a and upon changes the privacy policies are always
respected – the put transformation will be not allowed to reflect
back changes if the action a has insufficient permissions, such



as a read action having no permission to make changes in data
d on E2.

V. RUNTIME DEPLOYMENT ON THE EDGE

IoT systems are characterized by device and software stack
heterogeneity and deployment in possibly untrusted and differ-
ent administrative domains [21]. Our approach exploits exactly
the privacy preferences over data resources, facilitated by the
deployment of Privacy Governor components encapsulating
privacy policies and BX engine transformation mechanisms.

In edge computing architectures, IoT devices handling
(possibly sensitive) data and interacting with the physical
environment, the edge device is by definition located within
the administrative domain of its local IoT devices – one
can take that as the devices being in the same privacy
scope. Our approach treats the edge as a first-class entity.
Data flows between the edge and other external components
(i.e. other edge nodes, the cloud etc) must always respect
privacy policies. Architecturally, components (which may be
devices or the cloud) are deployed in different environments,
each containing local data. Edge and cloud components are
connected through the network, but they do not necessarily
trust each other. Each node sets its own data out- or in-
flow privacy policies that govern data synchronizations. Data
transformations mechanisms as well as privacy governors
control how data leaves or enters the node. In case of a change
in local data within some node, all others affected receive the
updated data (through the generated views, Section V). Thus,
nodes do not have to trust each other to exchange data, as this
occurs based on privacy policies that are in their own control.

The diagram of Figure 4, illustrates a runtime deployment
of our approach with respect to the motivating example of
Section II, as combined architectural deployment and data
flow diagrams. Edge nodes correspond to users’ laptops –
an additional device of User B is shown in the lower part,
connected to her laptop. Local data on each architectural node,
are managed by POET, consisting of a Privacy Governor,
responsible for checking privacy policies and the Data BX,
responsible for synchronizing data that are compliant to the
defined access policies. Upon a change, POET generates
views and synchronizes accordingly with other nodes. For our
motivating example, photo data labeled “P” are synchronized
between nodes of a user (User B in the lower part), and her
friends (in this case, User A). FriendIPLists (labeled “F”) are
always synchronized between edge nodes and the cloud node.

To use our approach and its accompanying prototype tool
in practice, a privacy engineer follows three distinct steps:

1) Privacy requirements of the system are encoded as
privacy policies in P-RBAC (Section III).

2) Data correspondences are demonstrated, depending on
the data formats used within the system (Section IV-B).

3) Automatically generated privacy-aware transformation
components parametrized with the system’s privacy poli-
cies are deployed in nodes (Section V).

Upon execution, POET produces data views which satisfy
the privacy policies specified, and those are synchronized
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among the appropriate architectural components depending
on the policies. If data are modified in one component, the
changes are propagated automatically to other components
affected by the change again based on privacy policies.

VI. EVALUATION

To provide concrete support for our data transformation
for privacy on the edge framework, we realized POET, a
prototypical tool based on BiGUL [11]. POET is freely
available [12], is implemented in Haskell on top of BiGUL
and contains a realization of a P-RBAC privacy governor.
Thereupon, we evaluate our approach over a medical record
privacy case study; experimental setup and results obtained are
subsequently presented; we conclude with a discussion. We are
interested in evaluation of both applicability and realizability
aspects of the proposed approach.

Applicability entails the appropriateness of our privacy-
aware bidirectional data transformation approach to capture
typical privacy requirements, execute transformations on het-
erogeneous software stacks with no modifications while allow-
ing vendor customization. As various data formats are used
in different domains, a vendor situated in a domain should
be easily able to customize data representations. This is also
important to avoid technological lock-in. Realizability entails
performance of the data transformations, especially regarding
the execution of transformations on resource-constrained de-
vices with different capabilities. We note that for our evalu-
ation, we ignore networking and communication effects and
we note that our available proof-of-concept implementation is
on a prototypical stage [12].

A. Case Study: Medical Information Privacy

We replicate a representative data deployment scenario
within the healthcare domain, where medical data reside in dif-
ferent logical and physical locations – medical record privacy
is a significant issue often driving privacy developments [4].
In our case study, we consider the following involved entities.

• Doctor’s Office (DO): a practitioner’s office, as the key
specialized treatment provider of a patient, makes use of
available data for a patient –such as medical tests from a
lab– for diagnostic reasons, as well as keeping patients’



personal information. A doctor may issue diagnoses, and
all this information may be synchronized with another
doctor or hospital in case of a referral or joint treatment.
In our case study we assume a DO to be associated with
0.3k patient records, including their medical tests and
diagnoses.

• Medical Lab (ML): a clinical laboratory carries out diag-
nostic tests on visiting patients – in our case study we
assume 2k records of medical tests to be in an ML node.

• Hospital (HL): database facilities in a hospital contain all
data for 1k patients including their personal information
from doctor’s offices, 5k past admissions as well as 5k
diagnoses. Such data are often used for patient manage-
ment and hospital organization. Moreover, hospitals in
a region may synchronize data with each other due to
patient mobility and specialized care.

• University (UV): research in a university setting often
makes use of certain medical data sourced from hospital
databases (such as diagnoses of a disease) for scientific
reasons. We consider 5k such diagnoses to be associated
with a UV.

• Patient’s residence (PR): monitoring of vital medical
information may be performed on a patient’s home,
making use of recent IoT developments such as Body
Area Networks [22]. Medical sensor data produced by
small sensors are often used for live monitoring and live
diagnosis reasons by medical practitioners. We assume
100 records of medical tests from sensors to be associated
with a PR node.

We treat the above as different architectural entities, situated
both at various edge nodes and the cloud. Specifically, the
hospital’s, and university’s data stores are assumed to be on the
cloud, with no computational or resource constraints. Medical
labs, doctor’s offices and patient residences are instead as-
sumed to be edge nodes, in the scope of which IoT devices use
and operate upon local data (e.g. a doctor’s personal computer
accesses freely data on the local edge node). Note that data
used in each architectural entity often is of a different format
– hospital database management systems often adopt XML-
variant EHR records [23], tabular data or other proprietary
formats, while edge nodes may utilize open formats such
as JSON or XML. However, privacy requirements in such
a medical setting govern how data flows between different
architectural entities [4]. Privacy policies considered are the
following:

(P1)
(
DO, (Update, DiagnosisRecords), MedicalCare, true, log())

(P2)
(
ML, (Write, MedicalTest), MedicalCare, AdmEndDate 6= null, ∅)

(P3)
(
HL, (Read, PatientInfo), Statistics, true, ∅)

(P4)
(
UV, (Read, DiagnosisRecords), Research, DiagnosisCore ≡ Q21, ∅)

(P5)
(
PR, (Update, MedicalTest), Storage, true, notify())

P1 specifies that patient diagnoses maintained in a doctor’s
office can be updated for the purpose of medical care with the
obligation of logging the information access. P2 specifies that
a medical lab has the right to write medical test information

as long as the admission end-date is not empty, which repre-
sents the duration of the patient’s admission. The hospital,
as specified in P3, can read patients’ personal information
for the purpose of statistics. P4 specifies the permission of
reading diagnoses data for purposes scientific research by the
university on the disease diagnosed as “Q21”. In a patient’s
residence, sensors within a BAN can update lab readings else-
where kept for storage purposes, which later can be used e.g.
for diagnostic needs, while a notification to the doctor must
be sent. Privacy policies P1-P5 must be always satisfied. We
are not concerned with modeling here but with the technical
infrastructure needed to support privacy-aware synchronization
between resource-constrained edge devices. As such, P1-P5
may not be sufficient enough to assure privacy in a hospital
setting but they can be considered representative of the case
study. In essence, any P-RBAC policies that domain experts
may model, POET would be able to handle.

B. Experiments Setup

We adopt a realistic synthesized medical dataset [24], to
respect privacy of real patients – although the dataset is arti-
ficially generated [25] it contains similar characteristics with
EHR data used in practice. Since we are concerned with data
transformations, the semantic content of the EHR data is not
relevant for our evaluation purposes. The experiments’ setup,
privacy policy specifications and datasets used are available
in [12]. What we seek to evaluate in two experiments, are i)
the applicability of our approach to deal with different devices
and data formats that are used in the various entities in the
case study and ii) the performance in which the privacy-aware
data transformations are executed in each deployment type.

a) Applicability: In practical applications, data used in
each deployment is different; we assume doctor’s offices,
BAN edge nodes and cloud-deployed nodes use EHR/JSON,
while the university uses a tabular format. Moreover, we use
different data according to the description of Section VI-A,
along with the privacy policies defined (P1-P5). For executing
experiments, we deploy our prototypical tools on appropriate
settings – hospital and university nodes are virtual machines as
typically deployed in the cloud, while edge nodes are limited
devices physically deployed in their respective locations.

b) Performance: We measure performance of POET
given an exemplar service level agreement (SLA) of 5 seconds
in i) the cloud, ii) an edge node, and iii) a resource-constrained
edge node, for comparison. In this case, we use identical data
and identical privacy policies to ensure fairness. Our choice of
a 5 seconds SLA is arbitrary; such an SLA reflects expected
response time of this kind of applications that we target and
enables comparison between devices.

Both experiments utilize computational nodes with the
following specifications. Cloud nodes use a single-core In-
tel 2.70GHz processor with 4GB RAM. Edge nodes are
ARMv8-based R-Pi3 devices featuring single-core 1.2GHz
CPUs and 1GB RAM. Moreover, we consider a more resource-
constrained edge device featuring a single-core ARMv6 1GHz
processor with 512MB RAM, for the BAN within PR. The



TABLE I
EXPERIMENT RESULTS FOR THE MEDICAL INFORMATION USE CASE.

Source size Source size View size BX
(datapoints) (bytes) (datapoints) Time

DO/Edge (ARMv8) 600 118k 300 0.26s
ML/Edge (ARMv8) 2000 413k 1900 2.33s
PR/Edge (ARMv6) 100 20k 100 0.19s
UV/Cloud (Intel2.7) 5000 954k 100 0.20s
HL/Cloud (Intel2.7) 11000 2180k 1000 0.38s

POET runtime is implemented in Haskell, applicable to a wide
range of environments and software stacks.

0
2

4
6

8
10

Size (data points)

T
im

e 
(s

ec
on

ds
)

SLA

Cloud
Armv8
Armv6

X0.5k X1k X1.5k X2k X2.5k X3k

Fig. 5. Performance of POET deployed on different devices upon identical
data and policies and across different data sizes, with a defined SLA of 5 sec.

C. Experiments Results

a) Medical Case Study: We consider two different data
formats in the medical case study, tabular format and JSON.
The prototypical data preparation stages for the two formats
are implemented as per Section IV-B, consisting essentially of
a parser and demonstration of unique data attributes. To give
an indication of data interfacing, we note that prototypical
implementations for the stages for the case study consist of
just 38 lines (tabular data) and 85 lines (EHR/JSON) of code
to transform other data formats into internal representation
compatible within our framework.

b) Performance Comparison: Firstly, results of the the
case study in Table I over data sizes that would realistically
reside on the various deployment nodes and according policies
(P1-P5) demonstrate that the computational overhead of the
privacy-aware BX component of our approach is minimal.
Figure 5 illustrates performance of the different computational
devices upon identical data and identical privacy policies along
different data sizes. A possible SLA of 5 seconds, which
could be defined by an end-user application, allows cross-
comparison and in line to expected response times of the
applications that we target, giving an indication of the data
sizes that can be adequately handled by deployments across
resource constrained devices.

D. Discussion

Based on the results of our experiments we believe to have
demonstrated that by using our privacy-aware transformation
framework realistic applications can be managed and that
performance on resource-constrained devices can be taken
into account during application design. Specifically, the case
study presented shows that for each data-device pair (Table I)
reasonable performance is achieved for realistic data sizes used
in practice. Moreover, from the perspective of practitioners
aiming to use our approach the flexibility demonstrated in
providing other source formats for input adds to the usability
of POET (i.e., a few tens of lines of code for data interfacing).
Performance results regarding the size of data (Fig. 5) provide
an indication of performance on resource-constrained devices,
which is in the range of about 5x (ARMv8) to 20x (ARMv6)
with respect to a typical cloud virtual machine. Another factor
that can affect performance is size and complexity of the
privacy policies, something that we identify as an avenue
for future investigation. Moreover, the feasibility of POET
to run on diverse architectures has been demonstrated. We
note that while our reference implementation is an unopti-
mized prototype, experimental results indicate feasibility for
relevant models.

Our approach produces privacy-compliant bidirectional
transformations of data. This consists the fundamental syn-
chronization primitive. To realize a complete end-to-end appli-
cation, operation and communication aspects must be treated,
such as concurrency of updates, conflicting changes and in-
crementality. Such issues have been tackled extensively in
scientific literature [26] [27] [28]. However, a basic assumption
has been on data structures that fit in memory, as edge
devices are resource-constrained and extensive data storage
facilities are usually not available. Our paper focuses on
privacy problems arising from data synchronization. Other
privacy violations because of message exchanges may require
a privacy model able to capture temporal sequences, such as
Contextual Integrity [29]. In addition, recent developments in
data within the IoT focus on streaming data. Our approach
is based on demonstrating a minimal set of data attributes or
fields on the source data preparation, that uniquely specify
a data item. To support streaming data, instead of unique
atttributes the position of a data item in the stream may be
used, something which we identify as future work.

VII. RELATED WORK

We presented a novel technical framework to engineering
data privacy tailored for the pervasive edge computing systems
of today, offering assurances on correct and well-behaved
transformations. Consequently, we classify related work into
three categories. First, we look into privacy models, position-
ing our work. Then, we review theoretical foundations on
consistency and transformation mechanisms. Finally, we dis-
cuss related engineering approaches that aim in synchronizing
structures applicable to the edge paradigm and thus to our
approach.



Satisfaction of privacy requirements is highly relevant in
edge computing. Such requirements include data confiden-
tiality, access control within the IoT, trust among various
devices and edge nodes, and the enforcement of privacy poli-
cies [30]. Role-based access control (RBAC) has been adopted
as a pattern to goal-oriented models for detecting security
problems by using model-driven transformation [31]. Inspired
by this, our work focuses on privacy issues that the edge
paradigm brings by applying model transformation. Many
privacy models are available in existing research and industry;
a typical example is the Usage Control model from the digital
rights management domain, with some similarities with P-
RBAC such as conditions and obligations [32]. The Privacy
Preferences Project features a protocol allowing websites to
express their privacy practices when they collect information
about web browser users with the character of declaration, but
not enforcement [33]. Other two popular languages that have
been developed for expressing enforceable privacy policies are
the Enterprise Privacy Authorization Language and the OASIS
Standard eXtensible Access Control Markup Language [34].
The latter provides an independent policy language encoded in
XML and enables different types of policies, not limited to pri-
vacy policies [35]. EPAL emphasizes the user categories that
can access data but without data purposes and obligations [36].
Instead, our work utilizes the generically applicable P-RBAC
–the privacy extension of RBAC.

Bidirectional Model Transformations are a popular mech-
anism for maintaining consistency of at least two related
sources of information, and have been widely adopted. An
approach that defines a consistency relation between two
models is QVT Relations (QVT-R) language in the OMG QVT
standard [37], supported by a QVT-R tool complying to check-
ing semantics [38]. A Triple Graph Grammar [39] can also be
used to conclude consistency, particularly between graph-like
structures, as well as find a partial correspondence model com-
bined with linear optimization techniques to detect maximum
consistency portions [40]. However, it is time-consuming and
non-trivial to manually maintain round-tripping laws. Other
approaches such as the Atlas Transformation Language [41],
graph querying [42] or security lenses [43] consider a standard
forward-direction transformation with automatically derived
backward transformations. With security lenses for instance,
one would write a get (forward transformation) - the security
lenses framework would automatically provide a secure put.
However, the forward transformation may not be injective
and its ambiguity of various corresponding put-directions is
what makes bidirectional programming challenging and unpre-
dictable in practice. Recently, putback-based approaches [19]
have been proposed as an alternative, and allow to only write
putback transformations. By contrast, a put transformation
could uniquely determine get by well-behavedness, and the
putback-based program guarantees that the get behaviours are
unambiguously specified. BiYacc [44] and BiFlux [45] are
typical examples where this is the case. BiGUL is a formally
verified language which serves as a foundation for higher-level
putback-based languages [11], [18]. In our approach, we adopt

BiGUL to write a secure put and obtain a safe (privacy-aware)
get with full control over the consistency restoration behaviors.

Edge computing is often referred as redefining users’ in-
teractions with IT services and integration with data synchro-
nization services. Synchronization issues have already been
emphasized in literature to cope with different data in the
cloud [46]. A delta synchronization technique is available
for web browsers – the most pervasive and OS-independent
access – exhibiting fine granularity (i.e., only changed con-
tent need to be sent instead of the entire data item) [27].
A QoE-aware open synchronization framework using web
technologies and adaptive synchronization model has been
introduced to synchronize media streams and ensure the user
experience of collective and interactive media [47]. In another
approach, a file synchronization model presents a two-stage
protocol along with a conflict resolution mechanism to manage
file data which spans multiple devices [48]. Our approach
provides a general mechanism to synchronize in-memory data
in multiple formats through customized data interfacing. A
middleware structure is proposed in [28] to facilitate efficient
synchronization in unreliable mobile environments, involving
bidirectional exchange of Electronic Health Record (EHR)
data between patients and a care facility. However, it does not
address privacy nor ensure bidirectional well-behavedness.

VIII. CONCLUSIONS

In this paper, motivated by the “data protection by de-
sign and by default” discipline [3], we proposed a technical
framework to engineer data privacy tailored for the pervasive
edge computing systems of today; it is based on a formal
approach guaranteeing correct and well-behaved data trans-
formations that respect privacy policies. In our approach, data
leaving a component does so always in accordance to privacy
policies, while changes applied to remote data are reflected
back automatically. Such automated reflection is achieved
through bidirectional model transformations featuring correct-
by-construction guarantees. Our privacy reasoning approach
is based on P-RBAC [7], a generically adopted model able to
capture roles and permissions, actions on data, conditions and
obligations that arise in privacy requirements. Our evaluation
demonstrates the applicability of our approach on a medical
information privacy use case and enables cross-comparison of
its performance on resource-constrained devices.

Regarding future work, we aim to support streaming data,
by investigating appropriate bidirectional transformations and
privacy models based on communicating agents [29]. More-
over, to realize a complete end-to-end synchronization frame-
work, techniques such as delta synchronization, conflict reso-
lution and versioning must be integrated, besides our bidirec-
tional transformations. Regarding the general edge computing
setting, a basic assumption of our approach has been on
structures that fit in memory – we plan to further investigate
memory management within this resource-constrained envi-
ronment as well as data storage and how they relate to data
within a privacy scope.
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