
Albin Aliu, 3. Juni 2022

Seminar Software Engineering
T9: Monitoring Spatially-Distributed Systems with Spatio-Temporal Logics

logics

Outline

i. Runtime Verification in a nutshell

ii. Classification

a. Signal Temporal Logic (STL)

b. Spatio-Signal Temporal Logic (SSTL)

c. Spatio-Temporal Reach and Escape Logic (STREL)

iii. Hands-On Lab: RTLola Specification Language

3

Runtime Verification in a nutshell[1]

• instead of proving that our system is correct, we’re going to monitor it and
check whether it violates our specifications

• from the specification we synthesize monitors, which observe data,
that is extracted from the system by means of instrumentation

• monitors can either be online or offline, meaning they can analyze and
monitor data while the system is running or they analyze the data after
the system’s execution

• Advantages: very precise information on the runtime behaviour of the
monitored system, lightweight
Disadvantages: limited execution coverage

[1] Bartocci, E., Falcone, Y., Francalanza, A., Reger, G. (2018). Introduction to Runtime Verification. In: Bartocci, E., Falcone, Y. (eds) Lectures on Runtime Verification.
Lecture Notes in Computer Science, vol 10457. Springer, Cham. https://doi.org/10.1007/978-3-319-75632-5_1

4

src: https://en.wikipedia.org/wiki/
File:Runtime_Verification_Monitor.svg,

07.05.2022

https://en.wikipedia.org/wiki/File:Runtime_Verification_Monitor.svg
https://en.wikipedia.org/wiki/File:Runtime_Verification_Monitor.svg

Classification: Preliminaries[1]

• Temporal Logic emerged from the need to specify propositions that depend on some timing assumptions, hence the
name

• Linear Temporal Logic introduces

• the next operator , meaning is true at the next point of the trace (other notation: X)

• the until operator , meaning is true from the current point of the trace until is true.

• From these two operators, one can derive two more commonly used operators*

• the always operator defined as (other notation: G for globally)

• the eventually operator defined as (other notation: F for finally)

* Can you make the link to safety and liveness properties?

∘ φ φ φ

φ1 𝒰 φ2 φ1 φ2

□ φ ≡ φ 𝒰 false φ

⋄ φ ≡ ¬ □ ¬φ φ

5

Signal Temporal Logic (STL)[1]
Introduction

• Usually, the data you pass to the monitor (figure slide 4) is an execution trace of a system,
thus it’s a discrete sequence of events

• Signal Temporal Logic introduces signals, where “a signal is a function from a set of real
time points to a value domain” [1], p. 9

• To work with signals, we add a new predicate

•

• for some function

• and , is a signal and is the value of the signal at time .

μ = f(x1[t], . . . , xm[t]) > 0

f : ℝm → ℝ

xi : ℝ≥0 → ℝ 1 ≤ i ≤ m xi[t] xi t

6

Signal Temporal Logic (STL)[1]

7

Lecture Slides: On Signal Temporal Logic by Alexandre Donzé

University of California, Berkeley

February 3, 2014

Signal Temporal Logic (STL)[1]

8

Lecture Slides: On Signal Temporal Logic by Alexandre Donzé

University of California, Berkeley

February 3, 2014

Spatio-Signal Temporal Logic (SSTL)
Introduction

• Extends STL with notions of somewhere and surround to express spatial properties

• interpreted over a discrete model of the space, represented as a finite undirected graph

• each node represents a location in the space, characterized by a set of signals that can
be observed in time

• each edge is weighted and represents the distance between two nodes

9

Spatio-Signal Temporal Logic (SSTL)
Syntax

10

• Where the STL operators are the atomic proposition ,
the standard boolean connectives (as conjunction) and (as negation)
the bounded until operator , for
Reminder: means ‘ must hold until holds and this should happen within time’
Remark: All other common connectives and operators are derived by de Morgan’s duality

ϕ := true |μ |¬ψ |ψ1 ∧ ψ2 | ψ1 𝒰J ψ2 | ⊚[w1,w2] ψ |ψ1 𝒮[w1,w2] ψ2

μ
∧ ¬

𝒰J J ⊂ ℝ
ψ1 𝒰J ψ2 ψ1 ψ2 t ∈ J

Spatio-Signal Temporal Logic (SSTL)
Somewhere

• is the bounded somewhere operator

‣ ‘ must hold in a location reachable from the current
one with a total cost greater than or equal to and
less than or equal to ’

• In which locations does hold?

⊚[w1,w2] ψ

ψ
w1

w2

⊚[2,5] ψ

11

Spatio-Signal Temporal Logic (SSTL)
Surround

• is the bounded surround operator

‣ ‘the above formula is true in a location when
belongs to a subset of locations , a region,
satisfying , such that its external boundary

 (i.e., all the nearest neighbours (not in)
of locations in) contains only locations
satisfying and these locations in must be
reached from by a shortest path of cost between

 and ’

• Let’s draw a graph in which holds

ψ1 𝒮[w1,w2] ψ2

l l
A

ψ1
B+(A) A

A
ψ2 B+(A)

l
w1 w2

ψ1 𝒮[3,6] ψ2

12

Spatio-Temporal Reach and Escape Logic (STREL)

• is a distance function

• e.g. in a graph this could be ‘hops’, i.e. going from one node to one of its neighbours
is 1 hop

Remark: All other common connectives and operators are derived by de Morgan’s duality

ϕ := true |μ |¬ψ |ψ1 ∧ ψ2 | ψ1 𝒰[w1,w2] ψ2 | . . . |ψ1 ℛf
d ψ2 | ℰf

d ψ2

f

13

• is the reachability operator

‣ ‘reaching a location satisfying property passing only through locations that satisfy
, through nodes whose distance form the initial location satisfy the predicate ’

ψ1 ℛf
d ψ2

ψ2
ψ1 d

14

• is the escape operator

‣ ‘the possibility of escaping from a certain region passing only through locations that
satisfy , via a route with distance satisfying the predicate ’

ℰf
d ψ

ψ d

15

STREL Examples

16

Temporal Logics vs Programming Languages

17

Faymonville, P. et al. (2019). StreamLAB: Stream-based Monitoring of Cyber-Physical Systems. In: Dillig, I., Tasiran, S. (eds) Computer Aided Verification. CAV 2019. Lecture Notes in Computer Science(), vol 11561. Springer, Cham.

https://doi.org/10.1007/978-3-030-25540-4_24

Meet RTLola

18

https://www.react.uni-saarland.de/tools/rtlola/, June 3, 2022

https://www.react.uni-saarland.de/tools/rtlola/

Why RTLola?

• Very powerful programming possibilities, allow for rule and state based monitors

• As seen, RTLola provides an online monitor

• We can easily emulate STL

• Also, we’re in 2022, i.e. IoT, 5G, GPS, everything is super equipped and super fast..

‣ Thus, just use the GPS sensor as a “stream” and act accordingly, implementation is easy
because we can program, instead of writing complicated formulae.

• RTLola monitors are guaranteed to never run out of memory, because the memory
consumption is determined statically

• Idea: With a fast enough pipeline, it could be even used for distributed algorithms!

19

https://www.react.uni-saarland.de/tools/rtlola/

RTLola
Nice!

20

https://www.react.uni-saarland.de/tools/rtlola/

Until Operator in RTLola

21

Conclusions

• There are many different temporal logics. However, to specify correct formulae is a
difficult task

• “Reading and writing property specifications is not easy for non-experts. Even
experts often stare for minutes at relatively small temporal logic formulae
(particularly when they have nested "until" operators).”
— Wikipedia on Runtime Verification

• Runtime verification and specification languages like RTLola make this a lot easier, as
they allow for programming

22

References

• Given by the teacher

• [P1] E. Bartocci, L. Bortolussi, M. Loreti, and L. Nenzi, “Monitoring mobile and
spatially distributed cyber-physical systems,” in Proceedings of the 15th ACM-IEEE
International Conference on Formal Methods and Models for System Design.
ACM, 2017, pp. 146–155.

• [P2] H. Torfah, “Stream-based monitors for real-time properties,” in Intl. Conf. on
Runtime Verification. Springer, 2019, pp. 91–110.

• [P3] Ezio Bartocci, Luca Bortolussi, Laura Nenzi, Simone Silvetti: MoonLight: A
Lightweight Tool for Monitoring Spatio-Temporal Properties.

23

Demo

• Head over to https://www.react.uni-saarland.de/tools/rtlola/

• Download the binaries for your OS

• cd into the directory

• write a specification file, e.g. (as seen in my snake demo):
input xcord: Float64
output hitting_left_wall := xcord < 100.0
trigger hitting_left_wall
 "NEAR LEFT WALL"

• Modify your program to write into stdout in a CSV format
‣ don’t forget to also print the header, e.g. “xcord, ycord, time” at the beginning of your stream and don’t forget the new line \n after

every row
• pipe the output into the RTLola interpreter as follows, e.g. with the snake example:

python snake.py | ./streamlab monitor snake.lola --online --stdin --stdout

‣ Here, snake.lola is the specification file
• You can find more examples and details here: https://www.react.uni-saarland.de/tools/rtlola/tutorial.html

The example (drone) data can be downloaded here: https://www.react.uni-saarland.de/tools/rtlola/examples/tutorial.zip
• Enjoy!

24

https://www.react.uni-saarland.de/tools/rtlola/
https://www.react.uni-saarland.de/tools/rtlola/tutorial.html
https://www.react.uni-saarland.de/tools/rtlola/examples/tutorial.zip

