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Abstract

This thesis presents an environment to teach programming and computer architecture
at high school level that allows students to experience and interactively explore various
abstraction levels involved in running a program.

Didactic literature suggests that exploring different abstraction levels improves students’
understanding of both programming and the inner workings of a computer system. Such
multi-layered exploration is also considered a foundational idea of computer science and has
to be taught because, among other reasons, some lower abstraction layers tend to leak through
interfaces anyway.

For this purpose, the teaching environment “Processing Abstractions” has been created
on the basis of the Smalltalk environment Glamorous Toolkit. This environment contains a
compiler for a subset of the Processing programming language in its Python form, for which a
variety of views were molded: tokenization, syntax tree building, transpilation of Processing
into Smalltalk, translations to an intermediary language and eventually to Smalltalk bytecode,
and finally, the program’s actual output. These views are tied to the source code, updated
live for seamless exploration, and can be composed into interactive material to teach the
abstraction levels involved in programming; examples for which are also included.

Processing Abstractions has been used and evaluated during a few lessons. On the basis
of the limited data available, the evaluation shows that the live environment does encourage
experimentation and allows students to work and learn at their own pace and depth. However,
understanding of the various layers has not improved significantly in the short period of time
that the environment could be tested.
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1
Introduction

In our modern digitized society, the importance of computer science has grown to the point where some of
its subjects are taught at schools of all levels. Whereas elementary schools focus on introducing digital,
connected devices and their applications, high schools also teach fundamentals, and while programming or
application use courses have been implemented for decades, broader and more theoretical courses have
only recently become standard. In Switzerland e.g. computer science became an obligatory subject for all
high school students in 2019, similar to more traditional sciences.

The curricula used in high schools usually contain introductions not only to algorithms and pro-
gramming but, among other topics, also to encodings, computer architecture, networking, and social
ramifications such as privacy and security (see e.g. [14]). Students are therefore not only taught a high-
level programming language such as Python, but should also develop insights into what happens at various
other abstraction levels when such a program is stored and run.

One traditional approach to teaching computer architecture consists in teaching a separate assembly-
like language during the introduction to computer architecture. This can happen in a more gamified fashion,
e.g. with the app Human Resource Machine [4], closer to theory with the Von Neumann Simulator [33], or
even without mnemonics using the Little Man Computer architecture [5]. While all of these approaches
help to show how a microprocessor might work approximately, none of them offer a direct, explorable
connection to a high-level language.

In our experience, high-level programming is quite popular with students, whereas the teaching
sequence on computer architecture tends to be less so. Programming and computer architecture also
haven’t fit together as nicely as we would have liked, and processor and memory have remained a mystery
for too many students.

Nevertheless, multitier architectures are considered to be a foundational idea of computer science by
didactic literature (summarized in 2.1), which is to be explicitly discussed with students. Such architectures
appear in multiple places throughout their curriculum within computer science – most prominently also in
networking and information encoding – but also in other subjects such as natural sciences, psychology,
etc. This discussion is important insofar as the clean separation of abstraction levels may unexpectedly
fail or “leak” (a concept introduced in 2.2.1), exposing lower levels through seemingly irrelevant side
effects such as timing or physical constraints. For a better understanding of such multitier architectures, a
Sichtenwechsel (i.e. a change of perspective in relation to layers involved, a concept introduced in 2.1.2) is

1



CHAPTER 1. INTRODUCTION 2

called for.
Following this, we claim that joining the teaching sequences for computer architecture sequences and

programming, by revealing and discussing abstraction levels involved in executing a program on a (virtual)
machine, will improve students’ understanding of both computer architecture and programming. For this
thesis, we thus set out to create an environment and course materials to test this claim.

In this thesis, we present the teaching environment “Processing Abstractions” (introduced in chapter
4) to experience and discuss abstractions encountered during programming (see e.g. figure 4.1 on page
21), allowing students to have a Sichtenwechsel on their own programs and allowing teachers to discuss
abstractions in a palpable setting.

The Processing Abstractions environment connects the high-level language Processing (based on
Python and introduced in section 3.1) with various layers down to bytecode for the Glamorous Toolkit
platform (introduced in section 3.3), and is targeted at high school students. It consists of a Processing
compiler and runtime support, a variety of views to show the mentioned connections, and corresponding
teaching material.

For teachers, suggestions for how to include the environment in the classroom are provided in chapter
5, with a sequence on computer architecture at the center, but flanked by two sequences on programming
and compilers for embedding it. All these sequences build upon the teaching environment provided and
rely on students being able to get multiple, varied views and insights into the same program, in order to
experience the behind-the-scenes work, or rather the details usually abstracted away, in an interactive
way. The students’ engagement is ensured due to all input being readily modifiable with changes being
immediately visible, allowing for almost frictionless exploration.

Parts of the lessons suggested have already been tested with two classes at Gymnasium Neufeld in
Berne to collect valuable feedback from students. While the sample size was too small to get statistically
significant results, observations and student feedback (discussed in chapter 6) have shown that the
environment works and that students are motivated by its liveness to explore the concepts provided.
Whether their understanding of the abstraction levels involved has improved, could, unfortunately, not yet
be shown.

All of this wouldn’t have been possible without the very helpful support of Prof. em. Oscar Nierstrasz,
who has finally managed to introduce me to Smalltalk, as he did with my former classmates twenty years
ago, and Prof. Timo Kehrer, who has taken this project under his wing together with his predecessor. I also
want to thank my students from the classes 27Ga and 28Ga of Gymnasium Neufeld, who have worked
with my prototype and given helpful feedback. Finally, many thanks go to my kids for their understanding
of me having to work even during their holidays, and to my wife for her endless support, which made this
thesis possible in the first place.



2
State of the Art in Computer Science Didactics

In relation to systems, didactic literature recommends examining multiple layers of a system, for students
to better understand the material. This concept (later called Sichtenwechsel for lack of a better fitting
English term) is introduced in 2.1.2 and is considered a foundational idea that should be exploited in
teaching as well as be taught explicitly (elaborated in 2.1.1).

Learning to handle complex systems is at the core of what happens in many subjects in school (high
school and beyond). In relation to computer science, this is asked for in particular when teaching students
computational thinking (see 2.1.3). One aspect that we feel is particularly important in this regard is the
fact that systems can rarely be separated into independently investigable layers in a clean way – or in other
words: many abstractions involved in layering complex systems leak (see 2.2.1).

When multiple abstraction levels are taught together, common approaches consist in doing so either
bottom up (2.1.4) or top down (2.1.5), showing how to potentially proceed.

In our experience, one thing high school students like particularly well during their computer science
curriculum is programming (which is reflected in the student feedback discussed in chapter 6). Therefore,
we want to merge the discussion on multitier abstractions and abstraction leaks with programming.
However, existing Integrated Development Environments (IDEs) as discussed in 2.2.2 only support this up
to a point we found insufficient. Thus, we set out to create our own teaching environment (presented in
chapter 4).

Finally, this environment for combining programming with a view on different abstraction levels should
also adhere to current didactic best practices, mainly manageability (2.1.6), liveness, and explorability
(2.1.7).

2.1 Didactic Approaches
Traditional introductions to programming usually focus on a single programming language, its syntax, and
the available semantics – introducing them iteratively and practicing each element with basic exercises.
Hartinger e.g. introduces most of Python in this way, so that it can later be used for scientific calculations
[38].

This traditional introduction works mainly on the level of the programming language, just barely
mentioning a simplified memory model (p. 31) and binary encoding (pp. 114–115). Interestingly, it does

3



CHAPTER 2. STATE OF THE ART IN COMPUTER SCIENCE DIDACTICS 4

not assume an IDE but instead very briefly introduces the command line and the Python Read-Evaluate-
Print-Loop (REPL). Even though in that way, files are not guaranteed to be UTF-8 encoded (as examples
assume, cf. p. 118), encodings are not mentioned beyond pure ASCII, and the Python interpreter is just
briefly characterized as “the program that translates source code into electronic instructions”1 in the
preface.

While the needs of academic teaching and the form of semester courses with lectures and separate
lab work tend to suggest such an approach, this is not a good fit with suggestions from current didactic
literature [52, 59] (and even past texts [30]), as described in the following subsections.

2.1.1 Foundational Ideas
Schubert and Schwill [59] base their didactic approach around the notion of foundational ideas (fun-
damentale Ideen) derived from Jerome Bruner and Alfred Schreiber. A foundational idea is a concept
that is deeply ingrained in a specific subject and without which the subject would lose part of its core.
Additionally, they ask for a foundational idea to have the following properties (pp. 64–65):

• Breadth: The concept is applicable not just in one specific context but can be used more generally.

• Abundance: The concept encompasses sufficient substance so that it can be taught to beginners and
experts alike.

• Meaning: The concept is meaningful to the learner beyond the scope of a course.

• Historical Relevance: The development of the concept can be observed historically, and the concept
has remained relevant through time.

As such foundational ideas, they list among many others the idea of modularization, the idea of layered
architectures, and the idea of encoding information (and as a special case: instructions).

As a consequence, they propose an introduction to programming by using several different program-
ming languages along different paradigms: e.g. Prolog as a declarative language (pp. 91–104) and Python
as an object-oriented language (pp. 157–185), in order to better teach the foundational idea of Language
and to demonstrate to students already at the level of instructions that the language chosen comes with
inherent limitations in expressibility (p. 154, comparing programming languages with natural languages
and referring to Wittgenstein’s philosophy of language).

Interestingly, they don’t mention any lower-level language as an alternative, considering translations
between different high-level languages to be sufficiently plausible to students, although the limitations of
languages such as an Assembly variation might be just as plausible, if not more, due to a far less expressive
command set.

2.1.2 Sichtenwechsel
Starting from the observation that “it was a fallacy to assume that students would be able to develop a
working model of a computer [. . . ] by designing small programs” [59, p. 213],2 Schubert and Schwill
introduce the notion of Sichtenwechsel, a change of perspective in relation to the current layer, which
should help students better understand concepts of one layer by inspecting lower layers (p. 173).3

Since multitier architectures and abstractions are foundational ideas of computer science, they propose
to introduce and teach both gradually – and that not only in the context of the networking stack and

1German original: ”[. . . ] das Programm, das den Programmcode in Elektronik-Anweisungen übersetzt.”
2German original: “Es erwies sich als Irrtum, dass Schüler beim Entwerfen kleiner Programme ein tragfähiges kognitives Modell

vom Rechner oder von Informatiksystemen im Allgemeinen entwickeln.”
3For lack of a concisely fitting English term, the German Sichtenwechsel will be used throughout this thesis.
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computer architecture (pp. 113–116). As examples for doing so, they show a live model of a calculator app
whose input is translated to both pseudocode and machine code (p. 115); an environment for inspecting
live Java objects (pp. 208–209); or the Filius environment for inspecting a virtual computer network at its
different layers (p. 284, [34]).

Other authors, such as Jaokar [41, p. 51] or Zhang [66, p. 407], have reached similar conclusions. This
reinforces the need for combining programming e.g. with computer architecture to allow students to
perform a Sichtenwechsel, which should help them to understand both better.

2.1.3 Computational Thinking
Since other disciplines have started to rely on computers as more than glorified digital typewriters and filing
cabinets, the notion of preparing students for work in academia and industry has shifted from teaching
applications to teaching computational thinking. Lee et al. [47] have assembled case studies from schools
where programming is used in physics, biology, chemistry, and other sciences, linking it to the role that
mathematics has had in the past centuries.

If students are to be able to solve problems in other domains using programming, simulations, or data
transformations, they must also be versed in dealing with different abstraction levels in order to connect
the abilities of a computer with the subject at hand. Buitrago et al. [32] point out that students must, in
particular, know the limits of computers and not attribute understanding and intelligence to them.

This has become an even more important matter with the recent rise of Large Language Models
(LLMs) to being ubiquitously available. With LLMs available, computational thinking even refers back to
programming: Martini [49] argues that with LLMs being able to write programs on their own, programming
curricula have to be adjusted accordingly. However, students will still have to be able to understand the
basics in order to be able to instruct an LLM towards a desired result. Also, recent studies seem to suggest
that relying on LLMs for coding does not lead to better developer performance [21] nor to better code [53],
as cognitive offloading has been observed. This effect is likely even more pronounced for students, as
getting quick results for simple tasks might lull them into overconfidence in relation to the available LLM.
As a consequence, the functioning and limits of LLMs must not only be taught as part of computational
thinking but also be used as another example for examining different abstraction levels in a computer
system.

2.1.4 Teaching Bottom Up
Beyond suggesting to connect multiple abstraction levels in a Sichtenwechsel (see 2.1.2), general didactic
literature does not offer more specific suggestions. There are, however, two readily available ways of
dealing with abstraction levels: Either starting at the bottom and building abstractions on top, or starting at
the most abstract and dissecting it into its more fundamental forms.

Starting at the bottom seems to be the conceptually sounder way and is e.g. how mathematics is taught.
One rigorous implementation of this approach is offered by Nisan and Schocken [55]: They offer a course
that starts with basic logic gates and builds out of them first the parts of and later a fully functioning, basic
CPU for which they continue to develop a low-level and a high-level programming language until reaching
the point where applications can be run on the developed hardware (this was originally dubbed as “NAND
to Tetris”).

Their motivation is similar to the motivation for this thesis: “The most fundamental ideas [. . . ] are now
hidden under many layers of obscure interfaces” (p. ix), which they set out to reveal. Since the course is
taught at university with hundreds of students, one concession is hardware virtualization: The original
logic gates are not built out of silicon or electronics but instead simulated in a portable Java app. This
allows skipping intermediary steps and makes it possible to start the course at any desired level.
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Since working with logic gates without seeing their eventual purpose may lack motivation, the course
starts with an overview from the top, which also serves as the table of contents (pp. 1–4, represented
in figure 2.1 on page 8). With this, students keep in sight what they are working towards and can start
connecting their own preexisting notions with the new material.

2.1.5 Teaching Top Down
An alternative teaching approach starts directly with the students’ experience, e.g. at gaming [64], art [57],
or even toy houses requiring intruder alerts [52], and starts exposing lower abstraction levels as required to
gain more control (and understanding) as well as extending available capabilities.

One approach, which nowadays might already be considered rather traditional, starts with games:
Weintrop and Wilensky [64] discuss a variety of games where programming plays a role in either shaping an
avatar, improving its available actions, or making it move altogether. Whereas such games are specifically
created as pedagogical games, many other games have at least part of their logic implemented in scripting
languages such as Lua [10], which allows them to be modified by players. While the content involved is
more complex, modifying or creating a game within the still popular Roblox app might also be sufficiently
motivating.

While gaming works as an approach to programming, it is rarely used to inspect further layers in an
educational context. Motivation for doing so is usually restricted to performance optimizations for game
platform developers.

An alternative approach, which originally targeted art students but works well in high school as well,
is proposed by Reas and Fry [57]: Starting from visual arts and extending the capabilities of the artist
through digital means. While the involved programming language, Processing, will be discussed on its
own merit in 3.1, their didactic approach is notable as well: A work of art on its own is something abstract
that not only can be interpreted but also created. To (re)create it, various painting techniques are needed,
which can be further broken down to basic movements. At this abstraction layer, they start with high-level
programming primitives to create basic shapes. This allows them to achieve pleasing visual results with
just a few commands and initially barely any programming knowledge. Afterwards, the question of how to
achieve more complex output is naturally motivated by the more complex works of art already discussed.

To achieve this, Reas and Fry [57] feature several chapters focused on exhibits of digital or hybrid art
such as Manfred Mohr’s Une esthétique programmée or Steph Thirion’s Eliss.

Additionally, as art can be considered as individual expression, the parallel to programming as
individual expression (as also proposed by Modrow and Strecker [52]) and programming as art is easily
drawn: “To use a tool on a computer, you need do little more than point and click; to create a tool, you
must understand the arcane art of computer programming.” (p. 3). Finally, programmed art must not
remain purely digital and can be extended to physical sculptures, for which at least some considerations
about hardware can be introduced.

While in both approaches – gaming and art –, stepping further down to lower abstraction levels is a
possibility, only one or two such steps are naturally motivated from the source material. Nonetheless, in
both cases a Sichtenwechsel is possible.

As a side note: In high school courses spanning over one or even multiple years, either a top-down or a
bottom-up approach could be implemented consistently. At university, with independent semester lectures
being the standard, the focus usually lies on a single abstraction layer or picking out just a few. Courses as
the one held by Nisan and Schocken [55] seem to be the exception. Arguably, computer science students
should be able to better cope with such disparities, whereas a more coherent approach might be desirable
for high school students.
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2.1.6 Manageability
Modrow and Strecker [52] follow Schubert and Schwill [59] in also building upon the concept of foun-
dational ideas. They do, however, propose to reduce their number significantly and focus on a few
very general such ideas as e.g. modelling, connectivity, digitization, and algorithms (pp. 27–37).4 As
a consequence, they propose to focus programming exposure for high school students on block-based
programming languages such as MIT’s Scratch5 or Berkeley’s variant Snap!6 (p. 125).

Their reasoning for this is that students should not (yet) have to deal with syntax errors (as opposed
to teaching these as suggested by Bouvier et al. [25]) and only have a manageable command palette.7

Furthermore, they note that block-based languages with free form layouting encourage students to build
complex behavior from simple building blocks that can always be run and inspected individually (pp. 184–
185). This allows for a bottom-up development approach in which abstractions are incrementally developed
out of basic command blocks, which they deem more suitable for students than starting development at the
abstract algorithm.

While Modrow and Strecker also suggest including digital circuits in the curriculum as concrete
examples of digitization (p. 118), they seem content with programming them without inspecting the layers
in between. From their foundational idea of connectivity, treating these layers could, however, still follow:
If students are to see how hardware and software are connected – and that such a connection is even
possible –, intermediary steps between program and hardware must be explorable by students.

Following in these footsteps, Chiodini et al. [28] similarly state the following requirements for
programming classes:

• Manageable complexity: IDEs and Application Programming Interfaces (APIs) must not be unnec-
essarily complex so as not to confuse students.

• Meaningful engagement: Samples and exercises should be introduced in such a way that it is clear
what they refer to outside of class. Their usefulness shouldn’t end with the exam.

• Clean problem decomposition: Bottom-up development should be effortless, and code should be
composable with minimal changes required, if any.

The last point explicitly asks for a clean separation of abstraction levels, which might be an ideal to
strive for but might not be realistically achievable (see 2.2.1).

2.1.7 Exploratory and Live Programming
Live programming refers to output and other intermediary products being adapted or recalculated every
time source code changes, without requiring any explicit saving and/or rerunning by the programmer
[58]. This gives students the quickest results, as otherwise they might work on code too long without
occasionally testing it if doing so requires additional interactions (for the same reason, many applications
have switched to auto-saving instead of relying on users to do so manually from time to time). Live
programming also gives students immediate feedback about their code and modifications.

Exploratory programming, on the other hand, refers to students exploring code and its effects by
running and modifying it in order to build a mental model.8 Both Schubert and Schwill [59, p. 367] and

4German original: “Modellierbarkeit”, “Vernetzbarkeit”, “Digitalisierbarkeit”, “Algorithmisierbarkeit”.
5Cf. https://scratch.mit.edu/.
6Cf. https://snap.berkeley.edu/.
7Going even further, Asai [20] introduced a block-based environment based on OCaml, which also inherently prevents scoping

and type errors.
8Usually, exploratory programming more broadly refers to programmers working without fully specified requirements and thus

having to discover these through exploration of the problem space. In this thesis, we will, however, restrict usage of the term to the
pedagogical setting.

https://scratch.mit.edu/
https://snap.berkeley.edu/
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Figure 2.1: Multitier model of a computer system [55, p. xii]

Modrow and Strecker [52, p. 167] suggest exploratory programming to allow students to work at their own
speed and depth: With shared examples, less experienced students can stay closer to the given – simple
but working – code, while more experienced students can use their knowledge to test more complicated
hypotheses.

While live programming requires explicit support from the programming environment (see 2.2.2),
exploratory programming is possible without it. In fact, Rein et al. [58] note that in literature these
concepts are usually treated separately, with barely any intersection between the two concepts. Apps
can better support exploration by at least providing a form of REPL, which most scripting languages do,
an interactive notebook (such as Jupyter or Lepiter, see 3.3), or a way of directly running any part of a
program, as Scratch does (see 2.1.6).

The didactic reasons for using both live and exploratory programming also apply outside of pure
programming, such as when inspecting and modifying live systems, networks, simulations, etc.

2.2 Multitier Architectures / Abstractions
In order to handle complexities arising in both theoretical and practical computer science, subjects are split
into multiple layers or tiers to be described, investigated, and used separately.

Common multitier architectures taught at high school level are the networking stack (for manageability
reasons, rather the simplified four-layered DoD architecture, than the seven-layered OSI model) or the
software-hardware stack, ranging from apps and operating system down to transistors consisting of e.g.
silicium atoms (see [1] and figure 2.1).

Ideally, in such architectures, all layers above the layer to be investigated can be ignored (beyond what
the layer will be used for), and all the layers below can be abstracted away into a nicely defined interface.

In this regard, programming should be possible independently of either hardware or operating system,
in the same way that natural languages can be taught independently of a specific body or mind of the
students.

However, this analogy shows that even in computer science, the philosophical mind-body problem
persists, albeit in a different form: “At the grossest physical level, a computer process is a series of changes
in the state of a machine” [29, p. 12]. In contrast to the human mind, where the interaction between
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objectively observable brain matter and subjective thought is at the core of an ongoing philosophical and
neuroscientific debate, in computer science, this duality of having electrical current on the one hand and a
running program on the other is decomposable all the way through.

And as has been shown above, didactic literature suggests that this feature should be discussed, as this
is a foundational idea of computer science.

2.2.1 Leaky Abstractions
In his article “The Law of Leaky Abstractions”, Spolsky [61] introduces the concept of leaky abstractions,
claiming that for all non-trivial architectures, details of lower layers are to some degree bound to bleed
through to upper layers. In other words, complex interfaces tend to be incomplete or “leaky” in practice.

In teaching computer science, such leaky abstractions occur repeatedly, e.g. when an app doesn’t run
on a different device (with either the operating system or the processor architecture leaking), or when a
document seemingly can’t be saved (with either the file system or differences between apps leaking).

More specifically in programming, there are several ways of abstracting away technical details:

• Programming instructions consist of source code, which consists of encoded bits, which are stored
in memory or on a drive.

• Source code consists of tokens, which are usually parsed into an Abstract Syntax Tree (AST), which
is either directly or via Intermediary Representation (IR) translated into machine code, which runs
on a virtual or actual machine.

• When programming instructions are executed through the above abstractions, variable values are
encoded and stored in memory, function calls are traced through a call stack, input state is continually
mapped into memory and output is generated in several forms – where e.g. textual output causes a
font renderer to interpret glyph instructions for every character; or graphical output is anti-aliased
before any pixel data is produced.

Of these different layers, students usually focus on turning instructions into source code and then
checking the program’s output – or any error messages produced by the compiler or interpreter (see section
2.1). Still, several of the lower-level abstractions might leak through, such as:

• Missing a stop condition in a recursive function leads to a cryptic “Stack overflow” error – leaking
information about the call stack.

• If a program outputs emojis, they might look notably different in source code and output – leaking
font rendering.

• Similarly, programs containing emojis might have the emojis garbled depending on the app used for
inspecting the source code – leaking text encoding.

• If a program contains an endless loop, there might be neither an error message nor output, so that it
might wrongly seem that the computer isn’t doing anything. This is not an abstraction leak in the
above sense but a related student misconception.

Besides the rather easily observable abstraction leaks mentioned above, the issue itself might also
have to be discussed, since recently one class of leaky abstractions has been shown to be security critical:
timing attacks. Since programs might be compiled differently, optimized differently, and run on different
hardware, runtime timing is not considered to be inherent to a particular piece of source code.9

9At least beyond generic complexity considerations on an algorithmic level.
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In cryptography, timing attacks have been successfully used for extracting passwords from insufficiently
protected web servers [56]. More recently, another class of timing attacks taking advantage of modern
CPU’s branch prediction optimizations has been demonstrated [44]. In the latter case, an implementation
detail of the CPU managed to leak. And in both cases, at least implementors of cryptographic programs
must be aware of lower abstraction levels.

Further examples of leaky abstractions are discussed by Egger [31] and many others [12, 42]. These
show that knowledge of lower layers is particularly important for developers of compilers and other
performance-critical programs: In order to optimize a program, the specifics of the platform architecture
and the implementation of processors and networking become crucial.

Since abstraction leaks are unavoidable in programming – even within block-based languages such as
Scratch –, they have to be discussed in any case. Instead of tackling them one by one as separate exceptional
cases, the literature discussed above suggests using this opportunity to work out the foundational idea of a
multitier architecture and of the interconnectivity of computer systems.

2.2.2 Abstractions in IDEs
Integrated development environments used for programming offer a variety of different views on a program
beyond its source code and its runtime output. The popular Visual Studio Code e.g. offers step-by-step
debugging with variables and the call stack listed through extensions [8]. This is mirrored in most other
full-fledged IDEs such as PyCharm [2] or Eclipse [7]. And while such IDEs even allow inspecting Python
bytecode through appropriate extensions, the respective views are usually overwhelming for programming
novices and thus rather targeted at professional developers than high school students.10

As a remedy, several teaching-oriented IDEs have been developed, such as the Code with Mu IDE,
which offers a minimal command set and still allows runtime inspection [63], or Thonny, which had the
goal to visualize runtime concepts beyond what IDEs offered at the time [19, p. 119]: On the one hand,
Thonny shows intermediary steps during expression evaluation. This demonstrates that statements are
not evaluated in one go but indeed in a predetermined order, operation by operation.11 On the other hand,
Thonny visualizes recursion by showing code in a new pop-up for every function call, so that multiple
recursive function calls lead to an equivalent number of visible pop-ups. Most other IDEs rather show a
call stack in a separate view, which abstracts the call stack into a list of method names and line numbers.12

Finally, Thonny distinguishes between values on the stack and values on the heap, showing the pointer to
the heap as the value actually pushed on the stack and, in a separate view, the actual object on the heap
at the given address. Thus, the Thonny IDE sets out to and indeed nicely visualizes several concepts on
lower runtime layers.

Jalalitabar and Wang [40] have assembled a list of tools targeted at visualizing some of these concepts
outside of an IDE. One notable such alternative approach is taken by Python Tutor [6], which combines a
visualization of stack frame variable values as pointers and deconstructed objects.

As an additional IDE feature, Sychev [62] suggests hints for syntax errors that show students a side-
by-side view of their entered code and the corrected code with all the required transformations highlighted.
They have implemented this feature for Moodle.

Bouvier et al. [25] ask for an extension of this: a view to show details about any form of error, helping
students to better understand the issue at hand. In particular, they suggest including an LLM assistant that
can further help explain an error to a novice student. How effective such an assistant would be remains to
be seen (see 2.1.3).

10For a more general but slightly dated overview of visualizations in programming environments, see Sorva et al. [60].
11In professional IDEs, intermediary results are usually available by hovering over a specific operator with the order of evaluation

being left to the user to determine.
12As a compromise, Glamorous Toolkit (GT) presented in 3.3 displays the call stack as a list of expandable method sources with

the call location highlighted.
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Compared to IDEs, the web development consoles offered by modern web browsers also provide a
variety of views of the various layers of the network stack. These views are, however, tailored to answer
the most common questions of a web developer instead of providing a coherent overview of how the
network layers interact.

A different introduction to lower system layers is suggested by Wörister and Knobelsdorf [65], who
also stick to block-based programming languages for manageability (see 2.1.6). They propose teaching
lower-level concepts based on their newly developed block-based environment Blocksambler, whose block
structure is translated live into pure text-based assembly language and whose debugging view exposes
program counter, registers, and memory. What is missing from Blocksambler is a way to directly connect
it with Scratch or any other high-level language.

As an intermediary step between block-based and purely text-based languages, Kyfonidis et al. [46]
propose a frame-based interface that adds a colored background to blocks and statements. While this is
meant to mimic a block-based view, it could just as well be used as an inline view of a program’s AST.
Their solution for preventing parser errors does, however, rely on heavily restricting possible student input
by having students first choose a statement type, which causes the respective template node to be inserted,
and then have them fill in the blanks. In effect, this introduces a new, two-step input mode.13

One kind of IDE where a close connection to lower architectural layers would be expected are didactic
IDEs targeted at microcontroller programming. While common microcontroller platforms such as Arduino
or micro:bit are supported in many common IDEs (including didactic ones such as Thonny, mentioned
above), specialized IDEs would be the ideal place to inspect the inner workings of a (virtual) machine.
However, neither the official Arduino Lab for MicroPython editor14 nor micro:bit’s Python editor15 offer
any additional views, not even matching Thonny’s.

13The original proponents of frame-based editing, Kölling et al. [45] also noted as much.
14Cf. https://labs.arduino.cc/en/labs/micropython, documented at https://docs.arduino.cc/micropython/environment/code-editor/.
15Cf. https://python.microbit.org/v/3.

https://labs.arduino.cc/en/labs/micropython
https://web.archive.org/web/*/https://docs.arduino.cc/micropython/environment/code-editor/
https://python.microbit.org/v/3


3
Technical Background

Before delving into this thesis’ product, an overview of the technologies involved is given in this chapter:
The environment described is implemented on the Glamorous Toolkit platform, which will be introduced
in 3.3, using Moldable Development patterns (a concept introduced in 3.2). Finally, as a teaching language,
we have chosen Processing for which an overview is given in 3.1.

3.1 Processing
Processing is a programming language consisting of a graphics API built upon a mainstream language as a
base. Development started between 1997 and 2004 at the MIT Media Lab as a continuation of the Design
By Numbers project with the goal of creating a unified environment to teach art students the fundamentals
of programming as a basis for creating digital, visual art.

While the original Design By Numbers integrated the language into an IDE, having input and output
side by side, it used its own, simplified programming language [13]. Processing’s authors, Reas and Fry,
based their language upon then popular and portable Java, removing much of the boilerplate required for
object orientation, enhancing it with visual primitives and implicitly showing an output window, allowing
for quick results (see figure 3.1).

Inside the IDE, Processing code is compiled to Java bytecode and run inside the same Java Virtual
Machine (JVM) as the IDE. The Processing API was thus provided in the form of compiled Java code,
and this hasn’t changed for the official Processing IDE to this day.

// Output canvas dimensions
size(200, 200);
// (Default white) square
rect(50, 50, 100, 100);
// Red inner rectangle
fill(255, 0, 0);
rect(50, 50 + 100 / 3, 100, 100 / 3);

Figure 3.1: Example code (with Java syntax) and output

12
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y = 50; dy = 0

# called once after global code
def setup():

size(100, 200)

# called repeatedly for every frame
def draw():

global y, dy
background(192)
circle(50, y, 50)
y += dy; dy += 1
if y > height - 25:

dy = -0.9 * dy

Figure 3.2: Example code (with Python syntax) and four output frames

Apart from graphical primitives, Processing features an implicit event loop, which allows for creating
(interactive) animations within a dozen lines of code (see figure 3.2). Reacting to input happens either
by polling while painting a frame (for this there are implicit global variables such as mousePressed,
keyCode, etc.) or by defining event handlers alongside setup and draw (such as mouseClicked(event) or
keyTyped(event)).

Since Python has become the prevalent teaching language [15], Processing has been extended with a
Python mode, which uses Python as a basis, with the Processing API being available by default and the
animation loop still being implicit [9].

As the official Processing IDE remains implemented in Java, Processing’s official Python mode uses
the Jython library to compile the code to Java Bytecode, so that it can be run in the same way as Processing
programs written in the original Java mode [11]. This also gives access to most of Python’s vast standard
library, with the exception of a few modules that were precompiled to native code for the various platforms
for speed reasons and thus had to be rewritten for or left out of Jython.

In fact, as the JVM is sufficiently generic to be the target for a wide variety of other languages, further
modes for JavaScript1 or R2 have been added. This allows Processing and its dedicated IDE to be used as
a starting point for programming and later seamlessly transitioning to the desired language, such as pure
Python, which remains part of the motivation for students: learning an “actually useful” language.

Since developers have started moving away from the JVM, there are now several reimplementations
of Processing, such as p5.js to run Processing on top of JavaScript in a web environment,3 p5.py to
run Processing in a pure Python environment,4 or a version of Processing for microcontrollers such as
Arduino.5 With this thesis, a limited version for a Smalltalk environment is also available (see chapter 4
and appendix B for an API overview).

In fact, when we started teaching programming in high school classes, we initially ran our own IDE
based on web technologies and p5.js with custom error handling and support for live programming6 before
changing to the official IDE for its Python mode. Our experience of working with Processing with ninth
and tenth graders over the past decade has shown that it allows novice programmers to learn enough of the
language within a month that they are able to write a clone of a game like Pong, Flappy Bird or Geometry

1Based on the Rhino compiler from https://rhino.github.io/.
2Based on the Renjin interpreter from https://renjin.org/.
3Cf. https://p5js.org/ and try it out at https://editor.p5js.org/.
4Requiring two additional lines: from p5 import * at the top and run() at the bottom; cf. https://github.com/gromko/

p5-python.
5Cf. https://www.arduino.cc/education/visualization-with-arduino-and-processing/.
6This IDE is still available at https://software.zeniko.ch/ProcessingIDE.zip. Note that it is targeted at mshta.exe and, as such,

runs best under Microsoft Windows.

https://web.archive.org/web/*/https://rhino.github.io/
https://web.archive.org/web/*/https://renjin.org/
https://web.archive.org/web/*/https://p5js.org/
https://editor.p5js.org/
https://github.com/gromko/p5-python
https://github.com/gromko/p5-python
https://web.archive.org/web/*/https://www.arduino.cc/education/visualization-with-arduino-and-processing/
https://web.archive.org/web/*/https://software.zeniko.ch/ProcessingIDE.zip
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Figure 3.3: The moldable GT environment with data structures being explored to create a view of an aspect
(here: bytecode for a Smalltalk method)

Dash as a group project. Feedback from the various student groups about this part of the computer science
curriculum has always been positive to very positive (and remains so, as we will see in chapter 6).

Reasons to use Processing are thus manifold: Processing allows a top-down approach starting with
visual art, which allows teachers to motivate students with less interest in mathematics and natural
sciences. Furthermore, it quickly yields pleasant-looking results, which also adds to the initial motivation
[28]. Additionally, Processing has a large community sharing sketches and ideas, which can be used
as inspiration for both students and teachers. Then, it can be based on currently widely used languages
such as Python, which allows using it as a stepping stone and makes it a “real” programming language
in the eyes of novices. In contrast, Processing itself is sufficiently unknown that even students already
experienced with programming will have something new to discover. Finally, it has proven itself in our
own experience over the years.

3.2 Moldable Development
Moldable development is a term coined by Chiş, Nierstrasz and Gı̂rba [26, 27, 35] for a software de-
velopment approach aimed at making computer systems easier to understand by extending (“molding”)
them with views and features when needed. The goal of moldable development is to quickly get feedback
on code, structures, and data being worked on, so that a programmer can confidently make appropriate
changes.

In traditional IDEs, a running system is inspected either through its source code or its live runtime
objects. Available views are barely customizable, and new views are added through non-trivial extensions.
In contrast, moldable development works in an environment in which a tool is more easily adaptable to
data, making it simple to write one-off views and tools, but also allowing developers to refactor such
throw-away code into reusable components if it proves useful.

Moldable development is thus a form of exploratory programming (see 2.1.7) on live objects where
tools, whether one-off or reusable, are created in a bottom-up approach with immediate feedback available
at every step. See e.g. figure 3.3, where the compilation of a Processing program is explored for what
information about the produced bytecode to show, with the goal of having one-off code sufficiently
generalized so that it can be added as a reusable view for all objects of this type (as eventually seen in
figure 3.4). Such exploration code could also later be extracted into tests, ensuring that what worked once
will continue to work.
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In order to support this, a moldable environment must have extensibility at its core, allowing tools and
views to be registered e.g. through a simple code annotation of a few characters, which the environment can
use to detect and include them (instead of having to write a lot of configuration boilerplate and overhead,
which are usually involved in IDE extensions meant for independent distribution).

Nierstrasz and Gı̂rba [54] identified several development patterns that are common to or supportive
of moldable development. One core pattern of moldable development is the Moldable Object: Objects
should be implementable incrementally with live object states and previously developed views remaining
available throughout the whole process. Objects often start out as little more than a wrapper around data
(i.e. a structure with accessor methods) and are then extended with new functionality as it fits the available
live data – instead of designing an object on a clean slate or along tests. Extending objects iteratively based
on actual needs should also ensure that code is cleanly separated, as during the exploration phase, it should
become clear where code fits best.

Having a moldable environment also allows for working on code and documentation intertwinedly,
similar to literate programming [43]. In contrast to literate programming, where code has to be extracted
and assembled first, in moldable development, every code snippet should be runnable on its own, and
besides code and documentation, also live results can be included. This allows a moldable environment
to be used to either first document ideas and then add matching code but also to document progress or
explain written code (which can then easily be extracted into a test case).

For students, such a Project Diary pattern could be used as a learning journal (similar to Microsoft
OneNote7), for project exploration (similar to Jupyter notebooks8), or for project documentation. Another
useful pattern for teaching could be the Composed Narrative that visualizes object relations through
side-by-side views tailored towards explaining a relation or interaction (as also exemplified in figure 3.3).

3.3 Glamorous Toolkit
Glamorous Toolkit (GT) is a fully programmable environment optimized for moldable development (see
3.2), consisting of a Smalltalk Virtual Machine (VM) and runtime environment, a custom user interface,
and the sources of the Smalltalk code for everything running within it. By default, it persists its entire state
into a system image, so that live objects don’t have to be recreated at restart [36], effectively yielding a
living system.

3.3.1 Smalltalk VM
Smalltalk is a fully object-oriented language based on message passing9 that was originally designed for
educational use and, as a consequence, has rather minimalist syntax that is supposed to read more naturally:
its syntax limits the need for parentheses, aligns punctuation with natural language (using full stops to end
a statement and semicolons to continue a statement by sending another message to the same object) and
interweaves a message’s name with its arguments10 [37].

One potential issue for programmers experienced in ALGOL-68-derived languages is operator prece-
dence, which in Smalltalk is limited for simplicity to just three different levels: (1) messages without
arguments; (2) binary operators (which in contrast to mathematics and most other languages discussed
in this thesis all have the same precedence and left associativity, and are of course also implemented as
messages); and (3) all other messages.

7Cf. https://www.microsoft.com/de-ch/microsoft-365/onenote/digital-note-taking-app.
8Cf. https://docs.jupyter.org/.
9One of many characteristics that Smalltalk shares with Java.

10Cf. e.g. the #ifTrue:ifFalse message in the code on page 16 where each argument follows part of the name. Note that
these are not the argument’s names; those are declared separately in the definition of #ifTrue:ifFalse.

https://web.archive.org/web/*/https://www.microsoft.com/de-ch/microsoft-365/onenote/digital-note-taking-app
https://web.archive.org/web/*/https://docs.jupyter.org/
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At GT’s core is the OpenSmalltalk Cog VM.11 The Cog VM is open source (MIT licensed) and shared
with other Smalltalk based environments, in particular GT’s predecessors (see 3.3.5). Its source code is
written in a subset of the Smalltalk language [39], which is transpiled to C both for performance and to
achieve cross-platform compatibility by relying on the various available C compilers. As a consequence,
GT runs on Unix systems just as well as under Microsoft Windows.

Smalltalk and the Cog VM are highly reflective, allowing access to all but the most fundamental
built-ins. In fact, all messages passed are primarily implemented in Smalltalk, but common operations can
be forwarded to native code with a <primitive:...> pragma annotation, with a fallback being provided
in Smalltalk in case the native implementation fails. In particular, the execution context and the compiled
bytecode of any message are available for inspection and modification. This has allowed us to easily
collect runtime information of compiled Processing programs.

For performance, the Cog VM includes a Just-In Time Compiler (JIT) to compile methods called
multiple times to native code on the fly [51]. More recently, for further optimizations, an adaptive optimizer
named Speculative Inlining Smalltalk Architecture (SISTA) has been introduced by Clément Béra [22],
which also enables saving the optimized methods into the image, thus persisting them between restarts of
the VM. The bytecodes used for GT are thus those proposed by Béra and Miranda [23] and diverge to
some extent from the original Smalltalk-80 bytecode format [37, p. 596], in particular by enabling (more)
multi-byte instructions that allow compilers to inline more common objects and code.

With GT being based on a Smalltalk VM, Smalltalk is GT’s primary language. Support for other
popular languages such as Python, JavaScript, or Java is, however, possible by connecting to an external
runtime through the LanguageLink protocol, i.e. by passing serialized objects over sockets [18].12 Obvi-
ously, objects in the other runtime can’t be persisted there. However, transferred data and objects can be
recreated from persisted objects within the Smalltalk VM.

3.3.2 Moldable Interface
While Smalltalk and the VM are inherited from Pharo,13 the user interface has been written afresh based on
the cross-platform Skia Graphics Engine, which also powers most modern web browsers.14 Every window
is rendered according to a dynamic rendering tree where every element involved (being a Smalltalk object)
indicates how it wants to be laid out. This layout is recalculated at every size change.

In its windows, GT by default provides a tabbed interface that can show one of several tools: an object
viewer, a notebook (dubbed “Lepiter”), a code browser, a git interface and many more. While such tools
are about as difficult to implement as an IDE extension, the object viewer – a tabbed interface itself – is
extended by simply annotating an object method that returns a GtPhlowView object with the <gtView>

pragma:

ProcessingCodeBase >> gtOutputFor: aView [
<gtView>
ˆ aView explicit

title: 'Output' translated;
priority: 40;
stencil: [ (ProcessingRunner new

limitTo: (self gtIsAnimation ifTrue: [ 30 ] ifFalse: [ 2 ]) seconds;
run: self clone;
canvas) asElement ]

]

11Cf. https://github.com/OpenSmalltalk/opensmalltalk-vm.
12The serialization format chosen is either JSON or the more compact binary representation MessagePack (cf. https://msgpack.org/).
13Cf. https://www.pharo.org/features and 3.3.5.
14Cf. https://skia.org/docs/.

https://github.com/OpenSmalltalk/opensmalltalk-vm
https://web.archive.org/web/*/https://msgpack.org/
https://web.archive.org/web/*/https://www.pharo.org/features
https://web.archive.org/web/*/https://skia.org/docs/


CHAPTER 3. TECHNICAL BACKGROUND 17

Figure 3.4: GT with a live notebook page (left) and inspectable object view (right)

In this example, the element passed to the stencil: message – here the canvas resulting from running
a Processing program – could instead also be displayed inside a notebook page, with no annotations needed
at all. Annotations are thus only required to allow GT to discover methods of a certain type.

Similarly, methods annotated with <gtExample> are considered tests and can be collectively inspected
and run for a class or an entire package. This achieves several goals of moldable development: What starts
as throw-away code can be extracted into a method and annotated, and then remains permanently available
for repeated testing. Examples can also be included by name in notebooks, where they function as tested
and thus guaranteed to work examples for documentation.

Since one of GT’s stated goals is to make systems explainable [36], it provides ample packages for
loading, transforming, and visualizing data in various forms, such as the SmaCC parser generator,15 a
graph builder [50], etc., but also a built-in explanation system, allowing developers to visually connect
arbitrary visual elements by annotating them.16

What might take some getting used to: All Smalltalk code and all live objects are stored in GT’s
.image file, which is updated whenever GT is quit with saving.17 This means that there are no easily
accessible source files outside of GT’s interface. Synchronization of Smalltalk code thus happens best
through GT’s built-in git client.

GT was thus chosen for its moldable environment: different views are easily implemented and can be
combined freely with interactions and updates between them.

3.3.3 Lepiter Notebook
GT’s Lepiter notebook is a database of named pages, which each may contain many different snippets: the
default Text snippet contains Markdown-formatted text,18 an Element snippet displays an object inline,19,
a Pharo, Python, etc. snippet is a source editor for the respective language with syntax highlighting and
tools for running and debugging the code, etc. The notebook in figure 3.4 shows examples of all three
snippet types.

Snippets are created and placed either with buttons positioned around a snippet’s border or with

15Cf. https://refactory.com/smacc/.
16In contrast to methods, objects are annotated by sending corresponding objects: a GtExplainerTargetAptitude or a

GtExplainerExplanationAttribute, respectively. See figure C.1 for such a visual connection.
17Source code changes are additionally tracked in the .changes journal.
18Cf. https://www.markdownguide.org/basic-syntax/.
19That object must either inherit from BlElement or implement the asElement message returning one.

https://web.archive.org/web/*/https://refactory.com/smacc/
https://web.archive.org/web/*/https://www.markdownguide.org/basic-syntax/
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keyboard shortcuts: Ctrl+Enter for creating a new snippet of the same type, Ctrl+Shift+Enter for
choosing a new snippet type, and Alt+Shift+Arrow for reordering a snippet. When a page is loaded,
snippets are rendered anew. This causes e.g. objects created by Element snippets to be recreated, as only
the source code for creating the object is persisted.

A special ToC page can be created to determine the order and hierarchy in which the other pages of the
same notebook are listed. This page consists of Text snippets containing page links, i.e. the page name in a
pair of double brackets such as [[Introduction]], in the desired order and nesting. The table of contents
is available for every notebook page through the � button at the top left.

Preexisting notebook pages are stored within one of GT’s subdirectories. Users can, however, create
new pages in the “Local knowledge base”,20 which can be backed up separately and which are stored even
when GT is quit without saving. All notebook pages indicate where they are stored in their footer and can
be moved between databases through that footer. This allows students to take an existing page from the
teaching material and move it locally to a location that is separately backed up, in case they later delete or
update GT.

For students, prepared notebook pages and objects spawned from them will be the main way of
interacting with GT, at least initially.

3.3.4 Bleeding Edge Issues
The developers of GT follow a trunk-only development style without release branches. This means that
the release version changes almost daily, with new features being introduced gradually. This also means
that subtle issues might be unexpectedly introduced in a release by or as a side-effect of some partially
implemented feature. As a consequence, if GT with an app is to be distributed, the best way to do this is
by downloading the latest version, loading the app into it, verifying that it works, and then distributing this
known good image.

When GT is used heavily, some lesser-tested code paths might be hit. We have occasionally had some
modifier keys apparently lock up, requiring app switching to get keyboard shortcuts working again; we
have sometimes hit a cascade of error messages, spawning dozens of debug windows, which had to be
closed without other consequences; and occasionally GT seemingly stopped responding, with even the
Ctrl+. keyboard shortcut not interrupting the running code (luckily, code modifications are backed up and
restorable through the “Code changes” tool). Most of these are small annoyances, which more restrained
users – such as students – shouldn’t encounter often.

Finally, GT is mainly developed under macOS and makes some platform assumptions with respect to
its host operating system. This isn’t noticeable when working purely within GT but occasionally shows at
its seams, with external executables not being located reliably when establishing a link to other runtimes,21

knowledgebase names containing path separators,22 or pasting source code from third-party apps leading
to visual bugs in GT’s code editor.23 We assume that most of the reported issues will have been fixed at
the time of reading, though.

3.3.5 Historical Remarks
Smalltalk environments have been image-based and resumable since the early days in the 1970s, when
Alan Kay sketched out the original Smalltalk, which he eventually standardized at Xerox into Smalltalk-
80. Based on a Smalltalk-80 VM, Ingalls, Kay et al. started developing a new VM and development
environment at Apple that had the goal to also be customizable by non-programmers [39]: Squeak inherited

20By default, this is located in the lepiter subdirectory of the user’s documents or home folder.
21Cf. GitHub issues feenkcom/gtoolkit#4608 for Linux and feenkcom/gtoolkit#4633 for Windows.
22Which can be worked around by renaming the database, see GitHub issue feenkcom/gtoolkit#3036.
23This applies under Windows, see GitHub issue feenkcom/gtoolkit#4634.

https://github.com/feenkcom/gtoolkit/issues/4608
https://github.com/feenkcom/gtoolkit/issues/4633
https://github.com/feenkcom/gtoolkit/issues/3036
https://github.com/feenkcom/gtoolkit/issues/4634
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its built-in capabilities for live and exploratory coding from the original Smalltalk, and it is back to this
point that GT’s heritage is directly tied.

While Squeak was further developed at Walt Disney Media Labs and, among other things, included
in the One Laptop per Child laptops, it remained a niche product – likely due to missing interoperability
between the live environment inside its VM and outside code. Still, Squeak and its later fork Pharo
continued to be worked on and were actively used in academia and related spin-offs. Eventually, a team
around Tudor Gı̂rba set out to implement their idea of a moldable environment on the basis of Pharo, thus
creating GT [3]. Version 1.0 was released in 2023 and is still being actively worked on.

GT thus has an illustrious lineage and has achieved support for many concepts asked for by literature:
It is a moldable environment, supports a clean object-oriented language, allows for live and exploratory
programming, still remains comparatively manageable and – particularly relevant for this thesis – allows
for reflection at various levels, including for every object access to its method’s source code, its compiled
form and even its memory layout inside its VM.



4
Proposed Solution: A New Teaching Environment

for Programming

In order to let students have a Sichtenwechsel in relation to programming, i.e. have them experience several
different abstraction levels involved between a program’s source code and its execution, a new teaching
environment dubbed “Processing Abstractions” is proposed:

Within GT, we have implemented support for the Processing programming language and molded
views for every implementation step along the way. This allows for creating interactive notebook pages
containing source code and a variety of these views, showing e.g. the AST and resulting bytecode for the
GT VM side by side.

In this chapter, we document the architecture of this environment and the reasons for the approaches
chosen. If you want to inspect the environment yourself, see appendix A for how to install all referenced
code.1

4.1 Overview of “Processing Abstractions”
Processing Abstractions consists of a transpiler for translating Processing source code into executable
objects, a runtime environment, a large collection of views of various aspects of the program, and teaching
materials using them.2 Tools and views, as well as materials, are all implemented within Glamorous
Toolkit (GT), the former in Smalltalk code and the latter as Lepiter notebook pages.

Figure 4.1 shows an excerpt from materials for students: The program visible at the top resides in a
Processing-specific snippet with commands to run and inspect the program, independently of the page it
resides on, at the bottom; below a combined view for one execution step is shown with (clockwise) the
step in question highlighted in source code; the corresponding bytecode visible; the program’s output up to
and including the current step; the contents of the execution stack of the Smalltalk VM; and a list of all
variable states.

1Remove the line GtExplorationHomeSection studentMode: true. in order to also see our implementation notes.
2The teaching materials currently provided are in the language used for teaching at the location of writing: German.

20
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Figure 4.1: Excerpt from an interactive notebook page on program execution in a VM
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Figure 4.2: An overview of all the views and the order students will step through them

Many such views are updated live whenever the source code is modified, without any other action
required by students.3 The five views shown in figure 4.1 can also be used on their own or in other
arrangements (e.g. only source and a full bytecode view where interacting with one automatically
highlights the corresponding items in the other).

As will be shown below, dozens of premade views are available. Any of them can be embedded in a
notebook page by adding an Element snippet with one line of Smalltalk code. The following code e.g.
connects the first Processing snippet on the current page with a live gtTreePlusSourceFor: view:

(ProcessingSource fromPage: thisSnippet page at: 1) renderLiveView: #gtTreePlusSourceFor:

From these views, interactive teaching materials related to programming, compilers and code execution
in a (virtual) machine can be composed, allowing students to combine their preexisting knowledge from
programming with concepts of different abstraction levels.

4.2 Exploring Abstraction Levels
Any of the views of a program require its source to be written in Processing with Python syntax4 available
either as a single file or as a snippet in a GT notebook. We recommend the latter, as views are then
generally live and the effects of changing the source code can be more easily explored by students. An
overview of available views is listed in figure 4.2.

Screenshots of all views can be found in appendix C. Note that most views show a molded collection
of objects that can be inspected individually by double-clicking the corresponding item.

3The one exception is the combined run-step view, which, for longer running programs, would be too resource intensive to
regenerate on the fly. Refreshing it manually is still possible.

4Restricted to the implemented API as documented in appendix B.
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4.2.1 Source Snippet
The Processing/Python snippet used in GT’s notebook pages is the only place where Processing source
code can be modified. It also provides several ways to run the program:

• � (or its shortcut Ctrl+R for “Run”) runs the program and either displays its Output view or an
inline error message.

• �i (or its shortcut Ctrl+G for “debuG”) runs the program, recording all individual steps at the level
of Python (sub)expressions – allowing programmers to step through the program’s runtime views
and inspect, among other aspects, the values of variables and the current state of the output.

• �a (or its shortcut Ctrl+D for “Details”) shows the Abstractions view, i.e. the program’s main
decomposition states: source code, AST, bytecode, and output.

• � (or its shortcut Ctrl+Shift+D) opens GT’s Smalltalk debugger at the gtRun entry point of the
transpiled code for live debugging for either advanced students or for looking under the hood of the
API calls.

With just one source snippet, students can write and inspect programs with the opened views updating
live as the program changes. This should give about the same experience as the Processing IDE, with the
main distinction that it is a live environment.

In contrast to the snippet, views are static in the sense that the source code can’t be modified there.

4.2.2 Output View
The only views students should already know are the traditional Source and Output views, which show the
source code and the result of running the program, respectively. Programs containing an animation loop
will show the animation and allow user interaction in any output view.5 Both views can be seen in figure
4.1 (at the center left and at the bottom right, respectively).

The Source view is meant to be linked to any other view, allowing for interaction between them by
selecting source expressions and having the corresponding item(s) in the other view(s) also selected.

The Output view can be used at any state to quickly verify visually that a program behaves as
expected, be it during an introduction to programming or when exploring part of a program’s execution or
decomposition.6

4.2.3 Compilation Views
One way to show students what happens to a program before it can be executed on a (virtual) machine is
to take them through the steps involved:

• The Tokens view (see figure 4.3) shows each of the tokens the lexer has encountered, including
additionally required information such as a line number and line indentation.7 This view can be used
for students to see what a compiler is looking at in their program, with whitespace and comments in
particular removed.8

5Interactions are currently limited to mouse movements and clicks.
6All these views are directly available for a Processing program when running it using �a or Ctrl+D and then selecting the i

selector at the top (see figure 3.4 on page 17).
7Indentation is relevant, as Python and, as a consequence, Processing with Python syntax is a language with significant whitespace,

using common indentation to denote code blocks.
8As a limitation, tokens are currently extracted in reverse from the parser, which prevents inspecting tokens of syntactically

invalid programs.



CHAPTER 4. A NEW TEACHING ENVIRONMENT FOR PROGRAMMING 24

• The AST view (see figure 4.3) shows the resulting parse tree in a form that differentiates semantically
relevant (sub)expressions from purely structural tokens. Combined with the Tokens view, this view
can be used for hypothesizing and exploring how and what tokens are grouped together. In order to
allow better interaction between Tokens and AST views, the latter is a tree-list. A proper AST Tree
view is, however, also provided where the tree structure is more obviously visible, in particular also
for larger programs.

• The Transpilation view shows the result of translating the AST to Smalltalk. Since the AST needs to
be barely modified for this translation step, Smalltalk code should be relatively easy to understand,
at least when the original Processing source is displayed in parallel.

The Transpilation view also allows students to see what Processing does implicitly behind the
scenes: setting and updating implicit variables, such as width, mousePressed, etc., calling setup

once and draw repeatedly, and running top-level code before entering the animation loop (see figure
4.4). Since GT’s code component is used for displaying the transpiled code, this view has syntax
highlighting and also allows users to explore the source code of called methods, letting students
see that even presumably primitive commands can be implemented out of blocks (or, in the case of
whileTrue: in figure 4.4, on the basis of recursion).

In order to discuss programming language syntax, two additional views Prefix and Postfix show
transpilations into a Lisp-like language using S-expressions and a Postscript-like language with
reverse polish notation, respectively. These may also serve as a basis for students’ own parser
projects, translating these pseudolanguages back into Processing or Smalltalk.

• The IR view shows the IR generated by the Smalltalk Opal compiler from the transpiled Smalltalk
code. With function and variable names still showing and optimizations still missing, this allows
students to make more sense of the eventual bytecode, in particular when both views are displayed
side by side.

• The Bytecode view (see figure 4.1 at the center right) shows a list of the bytecodes that will be run
by the Smalltalk VM9 with instruction addresses10 and mnemonics added, so that jumps can be
understood and the code can be more easily connected to either IR or any other form of Assembly
language. The bytecode of multiple methods is separated with the method name used as a separator,
as in the Smalltalk VM, addresses are counted starting at zero for every method.

All these views can be linked together, so that selecting an item in one view will highlight the
corresponding item(s) in the linked views. The default Abstractions view, available directly from every
Processing snippet, e.g. combines the source with AST, Bytecode, and Output (visible on the right-hand
side in figure 3.4 on page 17, with a source expression and its corresponding items highlighted).

Being able to walk through all of these various compilation steps is something we haven’t seen any
IDE offer. Furthermore, being able to connect this with an actually working program – in the form of the
Output view – should offer students an explorable and interactive insight into a manageable package.

4.2.4 Run Step Views
Since in the background we have an actual translation of the Processing program to bytecode, which can
be executed, we can also inspect the resulting execution. In contrast to the other views, this isn’t live but a
recording of a run, where we collect and show the following for every Processing (sub)expression being
executed (see figure 4.1):

9Unless it is later translated to native code by the JIT.
10These are actually byte indices in the method’s binary layout as used by the Smalltalk VM.
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Figure 4.3: Screenshot of a page of student content showing modifiable Processing source with live views
for tokenization (left) and abstract syntax tree (right)

Figure 4.4: Screenshot of a transpiled draw method and the implicit animation loop
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• The Source view shows the full source code with the (sub)expression in question being highlighted.
This view is meant to be combined with any of the following views.

• The Bytecode view shows only the bytecodes relevant for executing the current (sub)expression.
This will show students not only how many instructions a perceived single Processing instruction is
compiled into, but also allow them to find that there’s a calling convention that involves multiple
instructions for every function call.11

• The Stack view shows the VM’s value stack at the moment of a function call (i.e. with the arguments
already on the stack). For every stack argument, a “pointer” value is also shown as a pseudo-address,
as effectively that’s what the stack will contain. Since actual pointers aren’t available from the
Smalltalk VM, these “pointers” are, in fact, hashes (except for small integers, which students will
have to discover can, up to a point, be used as themselves).

• The Variables view shows the current values of all local and global variables (except for implicit
variables for manageability reasons).

• The Output view shows the output state after the step’s execution, allowing students to better judge
the effects of a function call.12

Since a single program run usually takes many run steps, these views are meant to be displayed together
in an interface, allowing observers to step through the execution. For manageability, when accessed directly
from the Processing snippet, this combined view will not contain the Bytecode and Stack views. The
full view will thus have to be shown explicitly to students once they have been introduced to the relevant
concepts, whereas the reduced view can also be used for debugging the execution of a program during an
introductory programming course.

4.2.5 Encoding Views
For a different connection, source code can also be viewed as text that has to be stored somehow. To show
this, there are two additional views for source code:13

The Characters view lists the source code split into individual characters and shows characters with
their Unicode value in decimal and hexadecimal. The hexadecimal notation is for a later comparison with
either a binary file viewer14 or with the Bytes view.

The Bytes view shows the UTF-8 encoding15 of the source characters, as they are actually written to
the disk. The bytes are again shown in their decimal and hexadecimal, but also in binary notation. This is
meant for students to combine programming with text encoding lessons as well.

4.2.6 Other Views
Three further views are provided for delving deeper into the implementation of compiler and runtime:16

The Slices view shows a list of all parsed Processing (sub)expressions with the corresponding transpiled
expression. This list is used internally for matching Processing code to derivatives of the transpiled
Smalltalk.

11In the case of the Smalltalk VM, this convention consists in pushing the receiver, i.e. the object being sent a message, to the
stack and, in the end, cleaning the stack up if the call’s result is not needed.

12Otherwise they would have to switch between states to verify that the expected result has actually happened.
13A screenshot of these views can be found in figure C.2.
14Such as e.g. https://hexed.it/.
15UTF-8 is the default encoding of most modern software, and in particular it is the encoding of both GT’s notebook pages and

source files produced by the Processing IDE.
16Screenshots for this views can be found in appendix C: figures C.10, C.8 and C.11.

https://hexed.it/
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The Hexdump view shows a serialization of all methods into their individual bytes, with the methods’
bytecode flanked by a header with flags, local variables, and a trailer. This can be compared with the Bytes
view of the source code, as both source code and methods are stored in memory and, eventually, on a drive.

The Shapes view shows a list of all shapes produced by a Processing program, demonstrating that in
an object-oriented environment such as GT, shapes aren’t just collections of pixels but also objects with
their properties, which can be handled independently.

4.3 Implementation Details
The Processing Abstractions environment contains a partial Processing compiler and runtime environment,
both implemented in Smalltalk inside GT. Views were primarily implemented as close to the required data
as possible. They are, however, also mirrored inside the main class ProcessingProgram, with a subset of
these being shown for ProcessingSource, which serves as entry class (see figure 4.5).

The implemented code can be found within GT’s Coder (package manager) or by name through the
Spotter (search engine; Û).17

4.3.1 Processing Compiler
A Processing program is compiled automatically when loading a source as a ProcessingSource from
either a snippet, a file, or a string and then sending the source a program message. Alternatively, the
following steps can also be performed manually:

The Processing compiler mainly uses GT’s built-in PythonParser class for parsing the code, which is
based upon the SmaCC parser generator.18 ProcessingParser is a transparent subclass, allowing us to
intermittently fix issues encountered in the Python parser.19

The resulting AST is then passed to ProcessingTranspiler, which first rewrites the constructs that
Smalltalk doesn’t support: compound assignments (e.g. a += 2 is expanded to a = a + 2) and unreachable
statements after a return, which have to be removed. Additionally, logical and and or operations are
converted from being left-associated (as per Python’s precedence table) to being right-associated, which
GT suggests for more efficiently handling early exits.20 This rewritten AST is only used internally and is
not visible to users.

Transpiling is performed by a tree visitor, translating the individual AST nodes to corresponding
Smalltalk with no optimizations. For each node, a ProcessingTranspilationSlice is recorded that
contains a reference to the AST node and the text span in the transpiled code.

Finally, an anonymous subclass of ProcessingCodeBase is created, and all Processing functions are
compiled from the transpiled code by the OpalCompiler to executable methods of that subclass. Global
Processing code is compiled into the gtRun entry point method and, if setup and/or draw functions are
defined in Processing code, the implicit animation loop is also added.21 Processing API calls – if not over-
written by user code – are translated through messages of the form ProcessingTranspiler>>emit_...:,
which the transpiler detects through reflection.

The compiled object can be used as any object. In particular, GT’s reflective capabilities can be used, e.g.
for extracting bytecodes of a method through CompiledCode>>symbolicBytecodes. ProcessingCodeBase
thus implements all views related to the Smalltalk VM.

17After it has been imported as described in appendix A. Note that a stable snapshot of the code discussed here is available at
https://github.com/zeniko/gt-exploration/tree/thesis.

18Cf. https://refactory.com/smacc/.
19It should be noted: All reported parser issues have been fixed within a day.
20The Smalltalk compiler doesn’t seem to optimize this case. We have not been able to verify whether the optimizing JIT does.
21In order to prevent overriding of gtRun and the different view messages, Processing names starting with gt are renamed to

starting with gt_ during transpilation.

https://github.com/zeniko/gt-exploration/tree/thesis
https://web.archive.org/web/*/https://refactory.com/smacc/
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ProcessingProgram mirrors those views and only implements views related to Processing code. In
order not to overwhelm students with too many views, gtDefaultInspectorTool has been implemented
on ProcessingProgram to hide all but the main Abstractions combination view behind the same symbols
as used by the snippet.

During compilation, the most common exceptions are SmaCCParserError during parsing, during
transpilation ProcessingCompileTimeException and ProcessingRunTimeException during execution.

4.3.2 Processing Runtime
The Processing runtime consists of ProcessingRunner and ProcessingCanvas:

The runner moves code execution to a worker thread, leaving the UI thread available for output and
interaction, and performs a simple heuristic to detect accidental endless loops by simply terminating
any program with too long a runtime. This is necessary in a live programming environment, as during
composition, students will almost inevitably write endless loops. The runner can also be used for extracting
runtime steps. In order to achieve this, GT’s debugging facilities for stepping through code are called,
and a debugging session is executed step-by-step in the background. For both use cases, the runner is
automatically called by ProcessingProgram.

The canvas provides the implementation of most of the Processing API: Every compiled Processing
program is assigned a canvas by the runner, and all Processing API calls are forwarded to the canvas for
rendering. The canvas is implemented using the model-view-presenter pattern, allowing for multiple views
for a single canvas. Shapes are thus also only abstractly created by the canvas, being instantiated by the
presenter in every single view instance.

4.3.3 Views
All views in GT are, by convention, provided by methods with names of the form gt...For: and are
categorized as “views” in the class browser.22

With any view visible in GT, Alt+clicking on a view’s name shows its source method(s), revealing the
view’s method name and implementation. The method name will be required for embedding a view in a
notebook page as described on page 22 above.

To compare the same views of different programs, the ViewComparison helper class is provided, which
can be used in Element snippets as follows:

ViewComparison newFor: {
(ProcessingSource fromPage: thisSnippet page at: 1) program -> #gtSourceCharsFor:.
(ProcessingSource fromPage: thisSnippet page at: 2) program -> #gtSourceCharsFor:.

}

4.3.4 Snippet
The Processing/Python snippet is implemented through LeProcessingSnippet and associated classes.23

This is mostly based on the provided LePythonSnippet, replacing the use of the Python language bridge
with calls to our own Processing compiler and runtime.

The snippet can either create ProcessingSource instances by itself, showing either the Output, Run-
steps, or Abstractions views; or its code can be programmatically loaded in a notebook Element snippet as
shown on page 22.24

22Actual requirement is only the <gtView> pragma annotation and the method signature (GtPhlowView→ GtPhlowView).
23See appendix D.2 for technical details.
24The at: 1 part of the message may also be omitted, if there’s only one snippet on a notebook page. Inspect the “views”

category of ProcessingProgram in the coder or consult appendix D.3 for a full list of available view names.
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4.3.5 Other approaches considered
Since Processing implemented on top of Python is a strongly but dynamically typed language, it maps
well onto Smalltalk. Still, three other approaches were considered initially:

Processing could be run either in the original JVM and then accessed through Python or directly run
using one of several Python libraries [17]. In all cases, its objects would be accessed through PythonBridge.
Unfortunately, at the time of writing, support for PythonBridge under Windows was difficult to achieve in
a portable manner (i.e. without requiring students to install multiple different packages, which increases
the risk of accidental breaking and thus potential support issues). Additionally, PythonBridge only gives
access to dictionaries of serialized Python object properties, which would have required a potentially slow
level of indirection involved when running and inspecting animations.

Alternatively, Processing could have been implemented through an interpreter in GT.25 This would
have required writing a separate compiler to create bytecode just for demonstration purposes.

As a third option, a compiler from Processing to Smalltalk bytecode could have been written.26

While this would have allowed for closer control over optimizations, it would effectively have become a
reimplementation of most of OpalCompiler.

4.4 Potential Drawbacks
Since GT is based on Smalltalk, an initial effort is required to learn both language and environment, before
their benefits can be used. This is helped by Smalltalk’s regular syntax and GT’s reflective capabilities.27

Modrow and Strecker [52] prefer a block-based language in order to prevent students from getting
lost in syntax errors. This issue has at least been partially remedied by having a live environment. Error
messages are, however, not in optimal shape yet, sometimes rather hinting at an issue than explaining it as
Bouvier et al. [25] call for.

Chiodini et al. [28] also propose starting with visual programming, but have different requirements:
In order to keep an introductory language manageable, they ask, among other things, for a limited API
that should be expandable by students (see also 2.1.6). And the full Processing API can indeed be quite
overwhelming, so only a subset must be introduced at the start. Indeed, also for this reason, only a subset
has been implemented in GT (see appendix B).

Another requirement by Chiodini et al. is for problems to be transparently decomposed and solutions
recomposed. This is indeed an issue with Processing: Moving a composed shape to a different location
requires adjusting the coordinates of all basic shapes involved. Therefore, variables and even functions
have to be introduced sooner rather than later to allow the examples shown [28, p. 9] to work. Similar to
how they introduce a library to achieve their desired API, the same functionality could be implemented on
top of Processing at a later stage if desired.28

The main reason for not introducing a new API as proposed by Chiodini et al. is the same as the reason
for not introducing an entirely new programming language optimized for teaching (as done e.g. by Black
and Bruce [24]): This prevents benefiting from the large community and preexisting documentation and
example code.

Using GT for students also means introducing a new environment, which might introduce new pitfalls
and adds additional cognitive tax on students.

25Remnants of which are available as ProcessingInterpreter.
26A compiler for a tiny subset of Processing is included as ProcessingCompiler.
27For Smalltalk and GT’s ancestor Pharo, there are sufficient resources available online; for GT itself, there’s the Glamorous

Toolkit Book [36] and a Discord server.
28In the teaching materials provided, an example of how to implement a simpler Turtle-based API is provided (see “Schildkröten

und Rekursion”), however, even Turtles have state, which makes composition non-trivial.
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Figure 4.5: Diagram of key classes involved in running Processing code within GT



5
Implementation: Lesson Plans

In order to show how the Processing Abstractions environment introduced in chapter 4 can be employed
for teaching high school students, we have assembled sketches of teaching sequences. Every sequence
aims to have students explore further abstractions involved in programming and computer architecture and
allows teachers to demonstrate that not just abstractions but also Sichtenwechsel are foundational ideas in
computer science.

In this chapter, we propose three different sequences. The plans for these sequences list steps from
which concrete lessons can be planned.1 For brevity, we focus on learning steps 2 to 4 in Leisen’s teaching
model [48], i.e. developing ideas, students working on their own, and discussions of their results.

The main sequence in 5.2 shows how Processing Abstractions is meant to be used for, on the one hand,
having students explore the various abstraction levels involved in translating a Processing program to
bytecode and running it in the GT VM, and, on the other hand, discussing computer architecture based
on these explorations. This sequence is also meant to better tie computer architecture to preexisting
programming knowledge. In particular, if the introduction to programming has already happened in
Processing or Python, this allows students to investigate their own programs instead of mainly relying on
sample code given by the teacher.

In order for students to best profit from that main sequence, we propose to use Processing Abstractions
also for the introduction to programming in 5.1. This is meant to increase the recall effect in students
when returning to programming, and is also for students to have programs of their own to investigate in
the later sequences. When the limitations of the environment are reached, the move over to the official
Processing IDE should be seamless: code copied over and run (with the same icon and shortcut) yields the
same output and can then be further modified with the full Processing API once students are ready.

To dive further into the matter or for students specializing in computer science, we finally propose a
third sequence in 5.3, which uses the same environment and potentially the same student programs from
the first two sequences to teach the inner workings of a compiler from lexer to optimizer (and potentially
again discussing abstractions per se).

Finally, in 5.4, we close with a few ideas for how Processing Abstractions could be used as a stepping
stone to introduce Smalltalk as a different programming language and GT as the moldable environment it
is, leading students in specialization courses to molding the provided materials further by e.g. extending

1e.g. according to a model as proposed by Manz and Schönenberger [16].
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the Processing API, developing new views or starting to work on a language of their own. This can be
used to discuss abstractions involved in teaching by revealing the innards of Processing Abstractions.

For all proposed sequences, Processing Abstractions can be used just for its Processing compiler,
runtime environment, and the various views provided. However, we suggest also considering embedding
the full course materials in interactive notebook pages for students to work in at their own pace. Processing
Abstractions includes a foundation of such materials in German, which have already been tested with
students and adjusted afterwards (see chapter 6). When used like this, GT can also serve as a digital
notebook to students, where they solve tasks directly in the page, add their own notes, and keep their
modified examples.

While Processing Abstractions is mainly targeted at high school students, the sequences proposed here
could also be used in middle school. For middle schoolers, the exposed user interface would, however,
have to be reduced as far as possible to keep it manageable. It could nonetheless work at least in a smaller
group with interested and motivated students wanting to step beyond block-based programming languages.
For university students, in contrast, there’s currently not enough depth available.

5.1 Introduction to Programming
While the Processing Abstractions environment has been developed to link programming and computer
architecture, it can also be used for an introduction to programming. This should help better link
programming and computer architecture for students, since they can start at the same point and reuse the
experience already gained and programs already written.

5.1.1 Educational objective
After the introduction, students should be able to . . .

• work within GT.

• read, write, and understand programs with a limited command set, including working with the
implicit animation loop.

• learn from their mistakes, correct themselves, and not be afraid of breaking things.

In the end, students should have a solid foundation to take on the task of writing a basic but still
interesting app or game.2

5.1.2 Prerequisites
Students need experience in using their own computer, including . . .

• downloading and extracting archives, and

• dealing with their virus scanner.3

Additionally, the teacher must prepare their content in GT e.g. as described in A and distribute it.
Ensure that the first lesson page will be displayed on the first startup.

2Possible ideas, which all have been implemented by students, include: Flappy Bird, Geometry Dash, Pong, Doodle Jump, Snake,
a quiz, a labyrinth, etc. For most of these, Processing Abstractions provides sufficient support, the main deficit being the lack of
keyboard input.

3At least under Windows, many scanners flag GT as untrustworthy due to its executable lacking a valid signature. Some virus
scanners even block the entire download if the archive is distributed over a network.
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5.1.3 Introduction to Glamorous Toolkit
Since GT will be a new environment altogether for all students, some basics on its usage have to be
introduced first within ten minutes:

→ Ask students to download and extract your GT distribution as homework for the first lesson. Under
Windows, they might run into a first issue with their virus scanner blocking the download, so remind
them about what to do in that case.4

→ Tell students to start GT and open the notebook page about working with GT (“Arbeiten mit
Glamorous Toolkit” in the included teaching materials). Also ask them to help their neighbours if
they see them struggling. Use the time while students are reading and doing the first tasks to ensure
that everyone has managed to get GT running.

→ Introduce GT as an interactive notebook similar to what students already know from class.5 One
main difference will be that additional views will open to the side, hiding the table of contents. So
show them how to get back by selecting the left-most view (through the blue dots at the center top)
and expanding it (through the � button at the top left).

→ If you want students to be able to take notes of their own inside GT notebooks, show them how to
move a page to their local knowledge base (where it can be backed up individually) and how to create
and structure new paragraphs (Ctrl+Enter, Alt+Shift+Arrow). Markdown syntax for formatting
does not have to be introduced explicitly, as that can be replicated by students by inspecting your
content.

→ Finally, keep in mind GT’s ability to be inspected at every level and point more advanced students
towards using these (e.g. by Ctrl+Shift+Alt+Click anywhere, by double-clicking on list items, or
by going through the different views of an object).

Please note that as described in 3.3, GT is bleeding edge technology and might not always behave
the way you and your students have become used to: Since notebook pages are rendered progressively,
scrolling won’t always work smoothly (and will scroll inner content, if the mouse cursor isn’t positioned at
a page’s border); occasionally unexpected error messages cause a debugger window to pop up, which has
to be closed again; and sometimes the keyboard modifiers may get stuck, resulting in shortcuts no longer
working (which is resolved by switching to a different app and back).

5.1.4 Lesson Plan
Since this is not the focus of this thesis, we won’t go into much detail about introducing programming, but
just summarize what might work within the provided environment:

Start top down as suggested in 2.1.5 from either abstract art or games6 and start dissecting how this
concrete entity might be described, first in natural language and then in formalized language.

Then follow Reas and Fry [57] and introduce the Processing language (see 3.1), by starting with a
sequence of statements with few commands (e.g. size, rect, ellipse, and fill), and then sequentially
introducing comments, colors, variables, and arithmetic, the animation loop, conditions, and interactivity.

4With most virus scanners, the warning can be overruled by the user; otherwise they might have to temporarily disable the scanner
for this one download.

5Many schools have standardized their IT infrastructure and use the Microsoft 365 Office Suite, which includes OneNote.
6Most one-tap games should work; e.g. https://www.lessmilk.com/almost-pong/ has reasonably simple gameplay with minimalist

visuals.

https://www.lessmilk.com/almost-pong/
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Figure 5.1: Excerpt from an interactive notebook page with exploratory and live programming tasks

Every concept can be described on a notebook page with given examples for first exploring the effects
of a command and its arguments7 and then later using the concept to solve problems by starting from a
skeleton program (see figure 5.1 for an example of both).

At the beginning, debugging will only consist in modifying values and observing live changes until the
desired output is reached. At later stages, the step-by-step execution views will be useful, where executed
expression, variable values, and visual output are displayed side by side and execution can be played
forward and also in reverse.

Quicker and more proficient students could also already, at this point, start to delve deeper: The third
and fourth execution icons will lead them to discover by themselves what lies under the hood.

Sample content for this is included in the Unterrichtsmaterialien of Processing Abstractions as
“Programmieren mit Processing”.

7Students may either describe the expected behavior and then verify that their expectation matches the outcome, or, as a less
taxing alternative, try given or random values and then describe their observations. Variations consist e.g. in a student describing
desired behavior and then (another student) trying to achieve this.
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5.2 Lesson on Computer Architecture
The main objective of this thesis was to demonstrate how understanding of what happens when executing
a program could be improved by having students perform a Sichtenwechsel. The same goes for the other
way around, where computer architecture is explained in more concrete form by tying it to previous
programming experience.

Introductions to computer science, which extend beyond a pure programming course, often contain
lessons on computer architecture. The curriculum [14, p. 145] e.g. asks for students to “know how
computers and networks are structured and work”.

We again propose to approach this task top down (see 2.1.5) and move along the path specified in
figure 2.1. This will be outlined here, with validation of part of this approach following in 6.2.

With respect to manageability (see 2.1.6), it is proposed to mostly skip the inner workings of a compiler
and treat that in a separate sequence (maybe only for students specializing in computer science).

5.2.1 Educational objective
After these lessons, students should be able to . . .

• explain the concepts of (virtual) machine, memory, stack, machine language, and program counter
(with reference to a von Neumann model).

• elaborate why machine language must be different from a high-level language such as Processing.

• explain why some commands are slower than others.

• connect their knowledge about encodings with how values and machine code are stored.

• consequently understand how one of their programs might be run on actual hardware and document
their understanding with correct terms.

• understand the relevance of multitier architectures and why knowing about this concept is relevant
beyond computer science.

5.2.2 Prerequisites
Students must already have basic programming skills in a high-level language. In particular, they must
know about variables and loops. If they don’t know Processing or at least Python yet, a brief introduction
(maybe along the ideas proposed in 5.1 above) is required.

5.2.3 Lesson Plan
Whereas Nisan and Schocken [55] introduce their bottom up course with a top-down overview, we propose
doing the same in reverse for this top-down approach:

→ Start with a brief repetition on programming by giving students a few quickly solved tasks (including
one about the animation loop, where at least the skeleton structure is given). If this is the students’
first encounter with GT, use this opportunity to introduce it (see 5.1.3).

→ Show students the innards of a computer and ask where their programs reside in there. Use this to
discuss hard drives and volatile memory, and repeat encodings and how everything boils down to 1s
and 0s (or current and no current, respectively).
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→ Briefly start at the desired lowest abstraction layer, e.g. (light) switches, and explain how they are
used to create processors.

→ Ask students about games they play, and have them describe possible player actions and compare
them with actual player input.8 This repeats top-down abstraction decomposition, as maybe al-
ready encountered in the introduction to programming lessons, and allows teachers to bring the
foundational idea of multitier architectures back to students’ minds.9

→ Have students go back to a sample or one of their own Processing programs, and let it (again) be
displayed in machine code. Provide them with several examples, e.g. with variable assignment,
with conditionals and loops, and let them assemble the required machine code mnemonics and byte
values.10 Suggest variations for the example, so that even with less programming experience, they
may find regularities.

→ Collect their findings and group their arguments: pushing to the stack/accumulator (machine codes 0–
83), returning (88–94), binary arithmetic and comparison operations (96–111), common commands
(112–127), message sending/function calls (128–175), jumps (176–199), storing results (200–216),
combined multi-byte instructions (first byte: 224–255) [23, p. 12].11

→ Take a step back: What is relevant for running a program? This should yield memory, (arithmetic)
operations, input and output, and control flow. Let students go back to their examples and see if
Processing code for one or multiple of these core concepts maps to the found machine codes.

→ Introduce von Neumann architecture (see figure 5.2) as an abstraction of the encountered concepts.
What physical parts of a computer belong to the idealized concepts?

→ Discuss VMs in comparison to physical machines12 and the difference of stack and register machines,
VMs tending to the former and physical machines to the latter.

→ Go back to Processing and inspect a combined execution view (see figure 4.1). By stepping forward
and backward, students should be able to observe the role of the stack and the program counter. Let
them explore execution flow and write down what role the program counter has and what the calling
convention for Processing API calls seems to be.

→ As a break or maybe as homework, let students play Human Resource Machine13 [4], which
introduces students to a different architecture. The first six levels should be doable for everybody,
with quicker students finding sufficient challenges later on.14

→ Compare the two instruction architectures with regard to expressivity and register- vs. stack-based
design.

→ To wrap up, go back to comparing high-level Processing code and low-level bytecode. Both are for
the same program but at different layers. Where else do students encounter such different views on
the same entity? In what other topics have they already performed such a Sichtenwechsel, and in
what topics would it still be helpful?

8Alternatively, if starting from art instead of games, decompose drawing e.g. a house into individual brush strokes.
9Multitier architectures might already have been discussed as part of networking lessons.

10Ideally, distribute the examples over small student groups, two groups per example.
11Students should, at this point, be able to explain where these seemingly odd number ranges stem from.
12VMs being used for portability reasons, such as the Smalltalk VM, the Java VM, Microsoft’s dotNet VM or any browser’s VM

for WASM.
13The Hour of Code edition is free to download for Windows and macOS.
14You can also come back to this during compiler lessons, as Human Resource Machine has players implement various optimizations

as additional challenges.
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Figure 5.2: Von Neumann architecture

→ Finally, treat circuits, logic gates, transistors, and maybe down to silicon outside of GT to the desired
depth.

5.3 Lesson on Compilers
Once students have an approximate understanding of what a program must be transformed into in order to
be run on actual hardware or inside a VM, the question remains as to how the transformation from source
code to machine code happens.

While this is not usually the focus of a general introduction to computer science beyond the superfi-
cial treatment occurring during the lessons on computer architecture, this is quite relevant for students
specializing in computer science.

However, using the environment presented here, this topic could just as well be used either for all
students or for quicker students to work on mostly by themselves. Part of the lesson presented here has
already been held under these circumstances (see 6.3).

5.3.1 Educational objective
After these lessons, students should be able to . . .

• explain the difference between high- and low-level languages.

• enumerate the steps required during compilation, using proper terminology (lexer, parser, transpiler,
compiler, optimizer).

• connect this knowledge with their knowledge of computer architecture and programming.
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5.3.2 Prerequisites
Students must have experience in programming and computer architecture, e.g. from the lessons described
above (see 5.1 and 5.2). It helps if their programming experience is based on Processing or at least Python.
Additionally, they need to have GT installed and introduced (see 5.1.3).

5.3.3 Lesson Plan
The natural way to progress on understanding a compiler is top down, which is the same as the chronological
order:

→ Before starting to fill in the content missing from the previous lesson on computer architecture,
begin with a repetition on how a program is run in a VM (see figure 4.1), letting students run again a
given program or one of their own, and seeing into what commands their code was translated.

→ As an analogy, analyze with students how they would go about translating an unknown language
using just a dictionary: splitting the text into words where punctuation yields some structure; then
looking words up (where again several words might belong together for the sake of translation15);
writing the translation down; and finally rewriting it, so that it sounds more akin to how you would
write it in the target language. This analogy yields a fitting overview of the different steps involved.

→ Let students work through discovering the individual concepts encountered:

• Have them compare a program and the resulting lexed tokens: What modifications to a program
result in different tokens, what modifications don’t cause changes? What does this correspond
to in the analogy about translating a natural language?

• Have them compare the abstract syntax trees resulting from their program(s). Are they able to
explain how the parser structures the tokens together? How would they proceed if all they saw
were just two tokens? (For this, use a view of tokens showing just two lines.)

• Discuss how a recursive descent parser works through tokens. Since Python and thus Processing
based on Python uses indentation for command grouping, also highlight the need for tracking
indentation at least per statement.

• Optionally have students compare given Processing source code with the resulting AST and
transpiled Smalltalk: How literal is the translation? What is different between Processing and
Smalltalk? Have them try to invent a syntax of their own that is easier to map to the AST (and
later discuss Lisp and Forth syntaxes as examples for alternative, easier to parse syntaxes16).

• Since usually an IR is directly produced from an AST, collect common statement types
(variable assignment, function calls, loops, . . . ), and have them translated live to IR. Let
students work out common patterns to see what translation might take place.

• Have views for IR and actual Smalltalk bytecode side by side for students to figure out what
transformations remain and why these might be required (comparing with their knowledge
from computer architecture lessons).

• Should students have prior experience with Human Resource Machine [4], have them translate
Processing to a program in that game’s simplified language and translate code for a level of
that game back to Processing (and from that Smalltalk bytecode with the environment’s help).

15Compare e.g. the meanings of “to see”, “to see to”, “to see through” and “to see out”.
16Views for variants of both are available.
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• For the final step, offer some simple code examples that can obviously be simplified.17. What
optimizations are present in the IR and which in bytecode? What patterns could be optimized?
Also discuss the difference of optimizing for size, for speed, and for quick compilation.18

→ What can’t be shown yet using Processing Abstractions are the equivalent of optimizations within a
processor (or already the x86, IA64, etc. code produced by the Just in Time compiler). However,
students should, at this point, have sufficient understanding of the various transformations that they
might be able to understand what happened e.g. with the Spectre attack [44] and why understanding
of machine code might be relevant for timing attacks.

5.4 Further Lesson Ideas
Whereas the environment presented here is mainly targeted at introductory high school classes, it might
also be employed in a specialization course. Since this is not this thesis’ focus, we will just list a few ideas:

• Smalltalk is a rather elegant language and has aged quite well. It can still be used to introduce
students to pure object-oriented programming with a somewhat unusual syntax for them, and such
an introduction could use transpilations from Processing Abstractions as a stepping stone, if students
have already used it.

• Since the code provided here is run dynamically in GT, it can also be molded further, e.g. to
implement as of yet missing support for object-oriented programming.

• The provided code might also be used as a template for students to implement their own programming
language or see if they manage to write an interpreter for one of the two provided prefix and postfix
pseudolanguages.19

• Finally, Processing Abstractions allows one to drive the point home that abstractions leak by showing
that teaching environments, IDEs, or, in fact, any app can be dissected, thereby revealing lower
architectural layers, and modified at these lower layers.

17e.g. print(1+1+1+1+1) or for i in range(10): pass, both of which should be trivially optimizable
18For players of Human Resource Machine, the first two are the bonus challenges in all later levels.
19This might already have been discussed in the compiler lessons above. Very briefly, a program such as a = 42; print(a)

is translated to (= a 42) (print a) and $a 42 = a print, respectively, both of which should be simple enough to parse.



6
Validation

The content produced for this thesis has been used in two courses. Evaluation of the feedback provided by
students shows that they did like working with the provided environment and that their understanding of
the abstractions involved in programming increased somewhat. However, due to limitations in the study
setting, further analysis will be required in order to generalize these findings.

Both evaluation rounds were held with classes at Gymnasium Neufeld that we have been teaching
ourself. These classes consist of Swiss high school students at ninth and tenth grade (of twelve grades),
respectively.

6.1 Methodology
Due to time constraints, we could only do two evaluation rounds of a maximum of 90 minutes each that
we had to teach and evaluate ourself. We therefore decided to combine qualitative observations during the
lessons with a questionnaire at the end, in order to optimize the possible learnings during the limited time
available.

Observations were taken qualitatively, unstructured, and in the open during the lessons, with a focus on
issues the students encountered and on what was already working satisfactorily. This was a compromise
due to teaching, supporting students, and taking notes all being done by the same person. As a consequence,
these observations were neither objective nor reliable. Still, they should have allowed us to detect some
common trends.

The questionnaires, which are available in full in appendix E, combine quantitative rating scales with
open questions. Since the questionnaires were only distributed to the students of the two classes, there
was never going to be a sufficient number of answers for doing quantitative statistics. The expected small
number of returns did, however, allow for open questions. Given the educational context, some of these
questions were set in the form of a pop quiz, in order to determine what students had learnt. For this, we
prefer open questions, because they allow us to better judge the depth of knowledge from how much a
student has written.

In addition to questions related directly to the lessons with Processing Abstractions, the questionnaires
also contained a section with open feedback on the computer science class in general. That’s not only
valuable feedback for the teacher at the end of a school year, but, in this case, could also give an insight

40
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into the popularity of various topics, without having to explicitly ask about programming and computer
architecture, and thus without influencing them too much beforehand.

Both questionnaires were intentionally kept short, so that students could complete them in ten to fifteen
minutes, and didn’t include a grid of rating-scaled questions, so that the questions felt genuine to students
and required intentional filling in.

The first validation round took place during the semester, so it could be followed up by a graded test
that included questions about the lessons with Processing Abstractions. Results from that test could then
be correlated with questionnaire data. The second validation round took place at the end of the semester,
with no time for another test remaining.

6.2 First Round

6.2.1 Setting
The first evaluation round took place in a computer science class consisting of 17 tenth-grade students.
This class had, at this point, encountered most of the base curriculum of computer science as required in
the Canton of Berne [14, p. 145–146], with only the introduction to systems architecture missing.

Specifically, the introduction to programming had been taught using Processing with Python syntax
inside the Processing IDE, so students already had the desired prior experience in programming with
Processing. Additionally, the class had written their last graded test five weeks prior, which had, among
other topics, contained a repetition sequence on binary numbers and encodings.

Contrary to the suggestions in 5.2, the introduction to computer architecture was being taught bottom
up, loosely following Nisan and Schocken’s ideas [55] in a significantly abbreviated course of only 6
instead of 12 weeks.1

At the point where the environment developed for this thesis was introduced, students already had
encountered some of the foundational building blocks of a modern microchip: transistors built out of
semiconductors, logic gates, and circuits up to an adder circuit as the basis of an Arithmetic Logic
Unit (ALU).

The plan was thus to connect the already encountered foundation with their knowledge about program-
ming by revealing and discussing several of the involved abstraction layers. Due to time constraints, only
an excerpt of the sequence proposed in 5.2 could be realized.

On the day of the lessons, 14 of the 17 students were present. At the start of the first lesson, GT was
distributed through the school’s OneDrive infrastructure. The GT environment was then introduced similar
to 5.1.3, but, as was the rest of the lessons, mostly in a self-guided way, with instructions being provided
in GT notebook pages.2

During the lessons, students were supported where needed but left to work at their own individual pace,
which the reduced number of students allowed for. At the end, a questionnaire was distributed to students
as a homework task to receive their own feedback in addition to the collected observations.3

At least one of the students missing the lessons was successfully able to work on the provided content
on her own.

6.2.2 Observations
During the time available, students have been able to work on their own for large amounts of time with
only a few common issues occurring. The interactive notebook pages seemed to allow for creating an

1The reason for this was originally the same as Nisan and Schocken’s, i.e. building concepts on a solid foundation.
2The exact state of the materials is available at https://github.com/zeniko/processing-abstractions/tree/thesis in commit

71047704f7f70c13d3d01ac520618e15d569274f of May 12th.
3See appendix E.1 on page 67 for the full questionnaire.

https://github.com/zeniko/processing-abstractions/tree/thesis
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effective teaching environment.
Additionally, many students have been observed to actively tinker with the interactive elements, as

was desired and was to be expected from providing an environment for live programming and exploration.
Except for a few hiccups where the GT notebook pages stopped updating (for which the usual cure of
reloading helped), the interactivity worked reliably – up to the point where students found it so engaging
that they got sidetracked by writing and modifying programs for their effect instead of the changes to the
views for different layers.

Nonetheless, the more active students have been able to work through the subject matter on their
own, whereas less interested students had to be motivated from time to time to continue reading and
interacting. With students being able to work on their own, we had ample time to support these students
with instructions, hints, and some motivating background information.

Despite their prior Processing knowledge, students were sometimes out of their depth when changes to
a Processing program were asked for. In a next round, this sequence would have to be placed closer to a
programming sequence with Processing, or at least a brief repetition of just using Processing would be
helpful.

What caused most issues was the way GT opened notebook pages from content links in a new page
adjacent to the previous one, hiding the table of contents in the process, instead of opening them in place
of the previous page, as students were used to from web browsers. This caused students to lose track of
the pages they were supposed to be working on, to the point of occasionally skipping part of the assigned
content. This happened despite the brief introduction to working with GT where closing additional pages
and getting the table of contents back was an explicit introductory task.

The overall impression of the lessons was that students had been working productively, mostly
autonomously, and at their own pace with the teaching materials provided.

6.2.3 Student Feedback
In order to verify our own observations, students were provided with a questionnaire. Of the 17 students,
however, only 11 returned feedback despite frequent reminders. Therefore, the following yields, at best,
qualitative results.4

Additionally, three weeks later, the students have written another graded test with individual tasks
referring to the lessons with GT.

Student feedback shows the following: Students quite liked working with the provided environment
(grading it mostly 4/5 with a bootstrapped 95%-confidence interval of between 3 and 4; see figure 6.1) and
reported that it worked reasonably well but not yet perfectly (most students grading it either 3/5 or 4/5 with
a bootstrapped 95%-confidence interval of between 2 and 4). This is consistent with our own observations.

Part of the reason for their liking working this way might be due to them considering programming
one of the best parts of computer science. This shows in the question about what students considered
to be their “highlight” of the computer science course, to which half the students responded with either
programming in general or the game programming project in particular.

When asked explicitly about the usefulness of the various abstraction views provided, students noted
that they were very useful (mostly grading it either 4/5 or 5/5 with a bootstrapped 95%-confidence interval
of between 4 and 5). Also, a majority of students indicated repeatedly interacting actively with the program
samples.

What they liked the most was being able to work at their own speed (and optionally being able to decide
for themselves whether to work together or alone). This is due to guidance from the environment, which
allows teachers to introduce tasks for students to explore autonomously in order to build understanding.
One student even explicitly noted that being able to see changes reflected instantly was gratifying.

4Questionnaire data in anonymized form is available at https://github.com/zeniko/gyminf-thesis/blob/main/data/data 6 1.csv.

https://github.com/zeniko/gyminf-thesis/blob/main/data/data_6_1.csv
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Figure 6.1: Answers to questionnaire questions 1 and 3: How well did you like working with this
environment? How well do you think you could explain what you have learned today?

Their main concern was two of the more engaged students, noting that some explanations were not yet
as clear as they could be, requiring them to ask instead of being able to work for themselves. Additionally,
the quickest working student would have preferred fewer links within notebook pages, reducing the
annoyance of losing the table of contents from web browser habits.

Students gave their feedback between one day and one week after the lesson. When asked to reword
the learned content in their own words, most of them failed to describe entirely correctly what they had
learned. Had their answers been graded, all but one student would have only been awarded at most half the
points. Also, the desired connection with the previously taught content about transistors and logic gates
remained unclear, with this time all students getting at most half the points.

Finally, the graded test resulted in students answering questions related to these lessons correctly to
only about 46%. This is consistent with the above observation that students had difficulties with the content
at higher taxonomy levels. This result does, however, weakly correlate with students’ general commitment
(measured by their final grade, yielding a rank correlation of 0.48), so might at least partially reflect their
motivation.

6.2.4 Learnings
The desired effect of having students better understand abstraction layers seems not to have yet been
achieved. While the environment was engaging and led students to explore on their own, explanations will
have to be expanded and made clearer for students to be able to fully understand what they are shown.

Part of the issue is, however, that time was too short and the implementation was not fully fledged, so
these findings might also be due to both of these. So further analysis will be required, and the environment
will have to be tested at a larger scale with the other classes with better integration in the curriculum (as
suggested by the author in 5.2).

At least some of the technical issues observed have since been remedied, although so far mostly by
more explicitly telling students what to do when issues arise. In particular, having page links behave like
in a web browser would be a helpful change, which we have not yet been able to implement.

Also, since GT runs purely on the students’ own computers, their progress can’t be observed other than
by monitoring their screens. For this, either a separate progress tracker (such as https://learningview.org/)
would have to be used or a sequence of short tests, not only checking for progress of reading but also of
comprehension.

https://learningview.org/


CHAPTER 6. VALIDATION 44

6.3 Second Round

6.3.1 Setting
The second evaluation round took place in a computer science class consisting of 23 ninth-grade students.
At that point, this class had passed about half the required content of the base curriculum to computer
science [14, p. 145–146], including application usage, various encodings, algorithms, and an introduction
to programming using Processing eight weeks prior.5

Two lessons at the end of the school year could be set aside for an introduction to compilers as part
of this thesis. These would usually have to be placed later in the curriculum, either together with the
introduction to computer architecture or beyond.

The plan was to implement an excerpt of the course from 5.3. As a quick overview, Human Resource
Machine was used for introducing students to the limitations of machine language and motivating the need
for compiling programs before executing them on actual hardware. Afterwards, GT was introduced with
additional stress on using the table of contents for navigation. Finally, students were asked to work through
the provided content at their own speed.6 Towards the end of the lessons, students were given time to fill
out a questionnaire.7

One unplanned limitation of these lessons was summer being early with high temperatures. As a
consequence, only 15 of the 23 students were present for the introduction, and the introduction had to be
moved to a different, cooler location.

6.3.2 Observations
In general, the students worked reliably with the content provided. In particular, this group seemed to quite
naturally take notes within the GT notebook pages, making the content their own.

Working speed again was heterogeneous, but some smaller groups formed, which supported each other.
One student in particular volunteered repeatedly to help his peers.

Despite programming with Processing being rather fresh, fewer students seemed to interact with the
sample programs provided, despite tasks asking them to do so explicitly. About half the students seemed
content to observe views as static content.

This group had more problems getting GT even to run. Even though these students already had
successfully downloaded and used apps on their own, and despite a separate GT launcher in the top-level
folder being provided, many failed to start GT on their own.

Part of these issues might, however, relate to high temperatures, making it more difficult for students to
focus.

6.3.3 Student Feedback
Of the 15 students present, 14 managed to hand in the questionnaire (with the last student’s computer
previously running out of battery power).8 With this small number of answers, again, no reasonable
quantitative evaluation is possible.

The students’ answers show that many of them (12/15) have worked more slowly than expected, only
learning about lexer and parser in the hour provided. Also, disappointingly, only two of the 15 were at least
somewhat confident that they would be able to explain the learned content to their peers (see figure 6.2).

5For unfortunate timing reasons, the programming project had to be postponed.
6The exact state of the materials is available at https://github.com/zeniko/processing-abstractions/tree/thesis in commit

6e22cddb176fdd46d410b9db40496bafa8a59c08 of June 30th.
7See appendix E.2 on page 69 for the full questionnaire.
8Questionnaire data in anonymized form is available at https://github.com/zeniko/gyminf-thesis/blob/main/data/data 6 2.csv.

https://github.com/zeniko/processing-abstractions/tree/thesis
https://github.com/zeniko/gyminf-thesis/blob/main/data/data_6_2.csv


CHAPTER 6. VALIDATION 45

1 2 3 4 5

Q1

Q3

1 = not at all, 5 = very much

1 2 3 4 5

0

2

4

6

1 = not at all, 5 = very much

N
o.

of
an

sw
er

s

Figure 6.2: Answers to questionnaire questions 1 and 3: How well did you like working with this
environment? How well do you think you could explain what you have learned today?

This is consistent with students failing to answer basic questions about the need for compilation (half
of them not answering or answering entirely wrong), but slightly better about the roles of lexer and parser
(one third answering correctly and one third getting at least half of their answer correct).

It is difficult to judge how much of this is due to the environment not meeting expectations and how
much is due to summer, as when asked explicitly about their thoughts on the provided environment, students
wrongly referred to the general learning setting instead of the Processing Abstractions environment.

The only general remark that students agreed on was that they had enjoyed programming (11/15),
which, in contrast to the other class (see 6.2), however, still did not result in as much tinkering (with only
4/15 students reportedly playing around and exploring).

6.3.4 Learnings
Unfortunately, not much was to be learned from this round, mostly due to environmental factors. A
repetition of this setting will thus be required at a later time. At least the content that students actually got
to seems to have been sufficiently clear for them to somewhat understand.

6.4 Evaluation
Significant validation was unlikely within the given constraints: Time was too short, not all students
handed in the questionnaire, in one case, and high temperatures came in the way in the other. All of these
issues could be remedied by embedding the usage of Processing Abstractions into a longer sequence over
multiple weeks, ideally followed by a graded test.

Nonetheless, within the given limitations, the methodology seems to have been sufficient: at least in
the first round, observations yielded valuable insights and led to several changes to Processing Abstractions
and its content; and the questionnaire still broadly confirmed our observations, also from the point of view
of our students.



7
Conclusion

In order to better understand complex content – at least with regard to computer science –, didactic
literature recommends that students perform a Sichtenwechsel, i.e. observe the same entity at different
abstraction levels, in order to better understand the subject at hand. As part of our teaching computer
science to high school students, we have been particularly interested in being able to do so with regards to
programming, which is usually popular with students, and computer architecture, which tends to be less so.

While various programming IDEs provide some possibilities to get relevant insights into a computer’s
inner workings, none of them offer an all-in-one solution as a building block at a complexity level
manageable for high school students. As part of this thesis, the new teaching environment Processing
Abstractions has thus been introduced, implementing a compiler and runtime for the Processing language
inside of Glamorous Toolkit (GT), which allows teachers to flexibly combine various forms of content in a
unified environment. On the basis of the working Processing system, a wide variety of views of various
aspects have been added, allowing students to inspect a program from source code to machine bytecode
and along its execution.

This enabled the creation of interactive teaching material that engages students through its liveness
and by allowing teachers to let them work at their own pace and depth through the material, having
students explore and experience what steps computers have to take to transform their idea of a program
into something sufficiently concrete that can be executed in a (virtual) machine.

Working with students showed that Processing Abstractions mostly worked and managed to get students
involved. While students seem to have learned through their own investigation into lower abstraction
levels, significant effects could not (yet) be measured. This was in large part due to both a small sample
size and too brief an observation window.

Further usage and studies will be required to verify our initial assumptions. This is planned for the
school years to come. Additionally, the foundational idea of abstraction levels has to be introduced
alongside explicitly if students should be able to get a better understanding of when abstractions might
leak and how that could be relevant.
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7.1 Future Work
To continue further on this path, there are multiple ways to proceed. On the one hand, there are several
aspects still missing from the environment itself. On the other hand, the same concept of Sichtenwechsel
might be applicable in other domains as well. Finally, a larger study confirming that this kind of approach
is empirically sound is required.

Within the environment itself, there are several kinds of views that we feel are still missing. In
particular, at this point, most views show a single state along abstraction deconstruction. Visualizations
of the transitions from one to the next are still missing and would have to happen mainly in students’
minds for now. Even just animating the Runsteps view instead of students having to click through, with
differences from one step to the next being highlighted, might help. However, animating the process of
parsing tokens into an AST or, more ambitiously, the process of taking Processing source code, parsing it
and then translating it would be more interesting.

Also, most lists provide access to native GT objects, whose views are not optimized for students.
Instead of e.g. giving direct access to a bytecode object, which only contains a pointer back to the Smalltalk
source, these could be wrapped or extended, so that their default view continues to be informative, such as
showing a short explanation of what the selected command does.

In addition, the machine code shown to students is targeted at a stack machine. However, common
microprocessors, such as those of the x64 architecture at the heart of our students’ computers, are register-
based. Compiling code to a matching machine language by e.g. transpiling it to C and then having it
compiled to x64 machine code would be a possible approach. Another approach would consist in directly
translating it to Intel Assembly or corresponding bytecode. In order to then run such code, a matching
virtual machine or a better way to show intermediary processor states would be required, if the execution
steps are to be observed.

Two other steps that are missing for inspecting the process of compilation are type inference and
optimizations. Processing and Smalltalk are both dynamically typed languages, which allows type checking
considerations during the compilation to bytecode to be circumvented, as type differences are handled
through inheritance and only optimized by a JIT. Exposing type information and visualizing a type
inference algorithm, such as Hindley-Milner, could be added. Python’s syntax would even allow type hints,
which could also be used to allow students to experiment with types.

Optimization, on the other hand, happens at various abstraction levels. With regard to choosing the
right algorithm for a problem, a program’s runtime behavior could be timed and shown. Alternatively,
most programs written by high schoolers should be understandable and analyzable by current LLMs, so
that adding a LLM-enabled view could give students feedback at the highest level. At lower levels, GT
offers a GtMethodAdvice system for analyzing source code at the method or expression level, which could
be exposed and/or expanded. Similarly, GT’s IR could be optimized further than IrMethod>>optimize

does, and its optimization transformations could be exposed to students.
As for the implementation of Processing, many bits are missing. Mainly, support for object-oriented

programming should be achievable, since Python’s object model should again map sufficiently well onto
Smalltalk’s. What will, however, not be realistically possible is to get a sufficiently full Python inside GT,
which would allow importing (arbitrary) further modules. This should, however, not be as much of an issue,
since similar to the Processing IDE, hitting the limitations of the environment should be taken as a hint
that the environment has been outgrown and to move to more capable tools, continuing the investigations
using professional debuggers, memory viewers, etc.

For students coming from a different programming language, adapting the environment to their
language of choice might also be doable. Since GT already contains support for parsing dozens of languages
(namely, among other languages, JavaScript, C(++), Rust, or even Visual Basic), matching a subset of
that language from its AST to Smalltalk should be doable in the same way as ProcessingTranspiler was
implemented. At least when sticking to the Processing API, the rest of the environment could be reused
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with minimal adjustments.
Going beyond programming, the same principle might also be applicable to other domains: We have

already seen the Filius environment, which allows students to deconstruct networks to various depths.
In natural sciences, processes can be modeled, investigated and deconstructed in a similar fashion in a
simulated environment. Based on a framework like NetLogo,1 which already presents multiple views of
the same phenomenon, further views for deconstructing and understanding the observed behavior could be
added. Having the simulation inside a moldable environment such as GT would certainly help.

In the same vein, in a psychology course, students could be exposed to views of the subconscious,
neurology down to biology and maybe even physics, when discussing behavior – for a better understanding
of the various influences on what might be perceived as purely mental; or in a music class, students could
get harmonics decomposed into oscillation and ratios – for a better understanding of what causes harmony;
etc. Applying this principle in other domains is, however, left to the corresponding specialists. What is
nonetheless desirable in all cases is an interdisciplinary approach once lower abstraction levels go beyond
one’s own domain.2

However, first, we have to proceed with a further investigation into whether our students from different
classes are indeed profiting in the way we intended them to – by using Processing Abstractions for revealing
programming language abstractions.

1Cf. e.g. https://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Biology/Ants.
nlogo.

2Similarly to how chemistry and physics will have to be involved when discussing the innards of a modern microprocessor.

https://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Biology/Ants.nlogo
https://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Biology/Ants.nlogo


A
Installing and Using “Processing Abstractions”

In order to set up Processing Abstractions, first download GT from https://gtoolkit.com/download/ for
your platform and extract the archive’s entire content.

Before running it, create a new text file called startup.st in GT’s top-level folder besides GlamorousToolkit.image
with the following content (access it through figure A.1):

Metacello new
repository: 'github://zeniko/\ac{GT}-exploration:thesis/src';
baseline: 'GtExploration';
load.

Metacello new
repository: 'github://zeniko/processing-abstractions:thesis/src';
baseline: 'ProcessingAbstractions';
load.

"Hide the 'Implementation and Tests' section."
GtExplorationHomeSection studentMode: true.

"Make indenting keyboard shortcuts available to non-US-English keyboard layouts
(cf. https://github.com/feenkcom/gtoolkit/issues/3002)."
LeSnippetElement keyboardShortcuts

at: #IndentSnippet
put: BlKeyCombinationBuilder new alt shift arrowRight build;

at: #UnindentSnippet
put: BlKeyCombinationBuilder new alt shift arrowLeft build.

"Make the zoom in keyboard shortcut available to de-CH keyboard layouts
(cf. https://github.com/feenkcom/gtoolkit/issues/4624)."
TLeWithFontSize compile:

((TLeWithFontSize methodNamed: #initializeFontSizeShortcuts) sourceCode
copyReplaceAll: 'equal' with: 'shift minus').

"Patch unneeded addressbar out of YouTube snippet
(cf. https://github.com/feenkcom/gtoolkit/issues/4560)."
LeYoutubeReferenceElement compile:

((LeYoutubeReferenceElement methodNamed: #updatePicture) sourceCode
copyReplaceAll: '</iframe>'' ' with: '</iframe>''; removeChildAt: 1 ').
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Figure A.1: QR-link to the code for startup.st, for convenience

Finally, run the GlamorousToolkit executable (under Windows and Linux it is located in the bin

subfolder). The teaching materials of Processing Abstractions are now available behind the “Unterricht-
seinheiten” home tile.

Verify that everything works as desired, and then close and save the changes to the image.
Warning: If you have already used GT before, the contents of your local knowledge database will also

be included in GT’s image. Therefore, rename that folder (usually lepiter/default in your documents
folder) before starting the GT meant for distribution, and undo the renaming before starting your own GT
instance again.

Also, since the executable GlamorousToolkit.exe is located in a subdirectory under Windows and
Linux, adding a top-level link can help students. See https://github.com/zeniko/gtRunner for a ready-to-use
drop-in.

https://github.com/zeniko/gyminf-thesis/blob/main/appendix.tex
https://github.com/zeniko/gtRunner


B
GT Processing API

This appendix lists the available API calls implemented in Processing Abstraction’s partial implementation
of Processing.1 This has been autogenerated from the GT page “Processing API”:

B.1 Rendering

B.1.1 Setup
background(r, g, b)

Clears the canvas and changes its color (see fill(r, g, b)). Default is light gray (192, 192, 192).

background(gray)
Clears the canvas and changes its color (see fill(gray)). Default is light gray (192).

size(width, height)
Prepares an output canvas of the given dimensions. This command must always be called first (for
animations, it must be the first command in def setup).

B.1.2 Shapes
ellipse(x, y, dx, dy)

Draws an ellipse with the given diameters and its center at (x; y).

image(image, x, y), image(image, x, y, width, height)
Renders the image loaded with loadImage(...) at the given coordinates (and scales it to fit the
given size). All arguments except the first are identical to rect’s. If width and height are not given,
the image’s native dimensions are used.

line(x1, y1, x2, y2)
Draws a line from (x1; y1) to (x2; y2).

1For comparison, the full API or Processing’s Python mode is available at https://py.processing.org/reference/.
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loadImage(pathOrUrl)
Loads the image from the given URL or path. The returned value is to be used with image(...).
Paths can be absolute or relative to either FileLocator class>>gtResource or:

Element
GtInspector newOn: FileLocator documents / 'lepiter'

rect(x, y, width, height)
Draws a rectangle of the given width and height, parallel to the coordinate axes with its top left
corner at (x; y). If an optional fifth argument is given, corners are rounded by that many pixels.

text(string, x, y)
Renders the given string with its baseline starting at (x; y).

textSize(size)
Sets the size for rendering text in pixels. Default is 12px.

triangle(x1, y1, x2, y2, x3, y3)
Draws a triangle with its vertices at the points (x1; y1), (x2; y2), and (x3; y3).

B.1.3 Colors
color(r, g, b), color(gray)

Generates a color value, which can be stored in a variable and can also be used as an argument for
fill(...), stroke(...), and background(...).

fill(r, g, b)
Selects the color to use for filling rendered shapes. The color is given as three values in the range of
0 to 255 (red, green, and blue, respectively). Default is white (255, 255, 255).

fill(gray)
Selects the gray scale value to use for filling rendered shapes. The color is given as a single value in
the range of 0 to 255 (black/dark to white/light). Default is white (255).

noStroke()
Disables borders for future shapes. Equivalent to strokeWeight(0).

stroke(r, g, b)
Selects the color to use for the borders of rendered shapes (see fill(r, g, b)). Default is black (0,
0, 0).

stroke(gray)
Selects the gray scale value to use for the borders of rendered shapes (see fill(gray)). Default is
black (0).

strokeWeight(weight)
Determines the size of drawn borders in pixels. Default is 0.5px.

B.1.4 Transforms
rotate(angle)

Rotates all future shapes by the given angle (in radians!) clockwise around the origin.
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scale(factor)
Linearly scales all future shapes by the given factor from the origin.

translate(x, y)
Moves the origin (0; 0) for all future shapes (defaults to the upper left corner).

B.2 Events
def draw():

Is called repeatedly (up to frameRate times per second) to draw the output.

def mouseClicked():
Is called whenever a mouse button has been clicked and released.

def mouseMoved():
Is called whenever the mouse has been moved. Alternatively, query mouseX and mouseY in draw().

def mousePressed():
Is called whenever a mouse button has been pressed. Alternatively, query mousePressed in draw().

def mouseReleased():
Is called whenever a mouse button has been released.

def setup():
Is called once as the program starts.

B.3 Mathematics
cos(angle)

Returns the cosine value for the given angle (measured in radians).

float(value)
Ensures that the value is a floating-point number (

int(value)
Rounds the value to an integer.

max(a, b)
Returns the larger of the two values (max(a) returns the largest value contained in the list a).

min(a, b)
Returns the smaller of the two values (min(a) returns the smallest value contained in the list a).

PI
The value of the mathematical constant p.

radians(angle)
Converts the given angle (measured in degrees) into radians.

random(limit)
Returns a random floating-point number between 0 and limit (inclusive).
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randomSeed(seed)
Reinitializes the random generator with the given seed number. Using the same number will result
in the same exact sequence of pseudo-randomly generated numbers.

sin(angle)
Returns the sine value for the given angle (measured in radians).

sqrt(value)
Returns the square root of the given value.

tan(angle)
Returns the tangent value for the given angle (measured in radians).

B.4 Lists
Lists are objects that provide their own methods. Note that for the following commands, list is a variable
referencing a list.

len(list)
Returns the number of items in this list.

list.append(value)
Appends the value to the end of the list. (list + [value] instead produces a new list. list + otherList

produces a new list out of two lists.)

list.pop()
Removes the last item from the list and returns the removed argument. (list[:-1] instead produces
a new list without the last item.)

list.reverse()
Reverses this list’s items. (list[::-1] instead produces a new list with its items reversed.)

list.sort()
Sorts this list’s items. (sorted(list) instead produces a new sorted list.)

B.5 Miscellanea
delay(ms)

Waits ms milliseconds before continuing (mainly needed for demonstration purposes).

frameRate(fps)
Limits the frame rate of animations to a maximum of fps frames per second. Default is 30.

height
Contains the canvas height as set by size().

millis()
Returns the number of milliseconds that have passed since the program started.

mouseX, mouseY, mousePressed
Contains the x- and y-coordinates of the mouse cursor and whether the mouse has been pressed at
the start of a draw-phase (undefined outside of draw).
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print(value), println(value)
Prints the given value into an output console (mainly for debugging and for programs without
graphical output).

str(value)
Turns the value into a string, e.g. to concatenate several values for use with text(...).

width
Contains the canvas width as set by size().



C
Views

The following pages show screenshots of all the views available through ProcessingProgram. Multiple
views are combined in single screenshots. This is not only for compactness, but also the way most views
are meant to be used: for comparing various aspects of the same program. Combined views are usually
linked, so that interacting with one view also affects the linked view(s).

To access the code implementing a view, Alt+click on its tab. This will also show the view’s internal
name. Alternatively, all views of ProcessingProgram are also listed in D.3.
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Figure C.1: The Abstractions view with source code, AST, bytecode, and output showing (this is the
default view for ProcessingSource and ProcessingProgram, as it encapsulates the essence of Processing
Abstractions)

Figure C.2: The Characters and Bytes views are for discussing encodings (bytes are UTF-8 encoded)
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Figure C.3: The Tokens and AST views are for discussing lexer and parser

Figure C.4: The AST as a pannable and zoomable tree, emphasizing the AST’s tree form

Figure C.5: The Transpilation view, showing Processing and Smalltalk code side by side, is for comparing
two different programming languages
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Figure C.6: Source code, AST, and a transpilation to two pseudolanguages with pure prefix and postfix
notation, respectively, for discussing programming language syntax

Figure C.7: The IR and Bytecode views show to lower-level representations of the code

Figure C.8: The Hexdump view serializes every method into its individual bytes
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Figure C.9: The Runsteps view is for stepping through execution and inspect variables and stack values

Figure C.10: The Slices view shows the list of objects linking Processing and Smalltalk code (see figure
C.5 above)
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Figure C.11: The Shapes view displays all output shapes individually

Figure C.12: The Raw view is provided by GT and shows all variables of an instantiated object

Figure C.13: The Meta view is provided by GT and shows all methods defined for the instantiated object



D
Technical Implementation of “Processing

Abstractions”

D.1 Repositories
The contents of Processing Abstractions are distributed over two GitHub repositories:

The repository zeniko/gt-exploration1 contains the source code for the Processing compiler, for
the runtime support, and for all the views. In addition, it also contains two dozen Processing programs as
examples and test cases (in ProcessingSourceExamples), demonstrating the entire range of implemented
features. Furthermore, this repository contains process documentation in a GT notebook named “Im-
plementation and Tests” on GT’s home screen and for that also prototype implementations of the other
approaches mentioned in 4.3.5.

The repository zeniko/processing-abstractions2 mainly contains teaching material for the se-
quences proposed in chapter 5 in a GT notebook named “Unterrichtseinheiten”. In contrast to the source
code repository, this content is written in German, as that was the teaching language for the validation
rounds in chapter 6. Programs for examples and tasks are contained in ProcessingAbstractionsExamples

and sketches in ProcessingAbstractionSceneries.
Both repositories have a thesis branch that has been frozen to the state described in this thesis,

whereas development will continue on the main branches.

D.2 Processing/Python Snippet
The Processing/Python snippet implements a model-view-viewmodel pattern. The implementation seen
in figure D.1 mostly inherits from GT’s Python snippet just includes minor changes to the UI such as
showing “Processing” in the upper right corner instead of information about a connected Python instance.

The main difference to the Python snippet is in the GtProcessingCoderModel, which offers more
different execution modes for Processing code:

1Cf. https://github.com/zeniko/gt-exploration/tree/thesis.
2Cf. https://github.com/zeniko/processing-abstractions/tree/thesis.
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Snippet

LeProcessingSnippet

LeProcessingSnippetViewModel

LeProcessingSnippetElement

GtProcessingCoderModel
doIt:
doItAndGo:
doItAndGoAsynchronous:
doItAndGoSerialized:
doItAndPublish:with:

GtProcessingCoderViewModel

asSnippetViewModel

snippetElementClass

ne
w

C
od

er

asCoderViewModel

Figure D.1: Diagram of classes involved in LeProcessingSnippet

• � calls GtProcessingCoderModel>>doIt: to create a ProcessingSource and show its Output view.
This action’s shortcut is handled by GtProcessingCoderRunShortcut.

• �i calls GtProcessingCoderModel>>doItAndGoSerialized: to create a ProcessingProgram, ex-
tract its runsteps, and show a Stepper showing the gtOverviewFor: view of ProcessingRunStep
(this is a slightly reduced variant of gtAbstractionsFor, for manageability reasons). This action’s
shortcut is handled by GtProcessingCoderRunStepsShortcut.

• �a calls GtProcessingCoderModel>>doItAndGo: to create a ProcessingProgram and show its
Abstractions view. This action’s shortcut is handled by GtProcessingCoderRunDetailsShortcut.

• � calls GtProcessingCoderModel>>doItAndGoAsynchronous: to create a ProcessingProgram and
call its debug method to start a debugging session in GT’s debugger. This action’s shortcut is handled
by GtProcessingCoderDebugShortcut.

D.3 Views
The following views are available as arguments for ProcessingSource>>renderLiveView: (see page 22).
Figure D.2 shows an overview of all view implementors.

gtAbstractionsFor:
(implemented by ProcessingProgram) combines gtSourceCodeFor:, gtTreeFor:, gtBytecodeFor:,
and gtOutputFor:, linking the source to the other three views through a common Announcer reacting
to selection changes (shown in figure C.1).

gtBytecodeFor:
uses the CompiledMethod instances of each method in a compiled class’ class methodDict to access
its symbolicBytecodes and show the resulting SymbolicBytecodes’ bytes and mnemonic (shown on
the right in figure C.7). gtBytecodePlusSourceFor: combines this view with gtSourceCodeFor:.

gtBytecodePlusIRFor:
combines the gtBytecodeFor: with gtIntermediaryRepresentationFor: (shown in figure C.7).
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Processing

ProcessingSource
gtAbstractionsFor:
gtBytecodeFor:
gtIntermediaryRepresentationFor:
gtOutputFor:
gtSourceCodeFor:
gtTranspilationFor:
gtTreeFor:

ProcessingProgram
gtAbstractionsFor:
gtBytecodeFor:
gtBytecodePlusIRFor:
gtBytecodePlusSourceFor:
gtHexDumpFor:
gtIntermediaryRepresentationFor:
gtIntermediaryRepresentationPlusSourceFor:
gtOutputFor:
gtOutputPlusSourceFor:
gtOutputShapesFor:
gtSlicesFor:
gtSourceBytesFor:
gtSourceBytesPlusCharsFor:
gtSourceBytesPlusSourceFor:
gtSourceCharsFor:
gtSourceCharsPlusSourceFor:
gtSourceCodeFor:
gtStepsFor:
gtTokensFor:
gtTokensPlusSourceFor:
gtTokensPlusTreeFor:
gtTranspilationFor:
gtTranspilationPlusSourceFor:
gtTranspilationPostfixFor:
gtTranspilationPrefixFor:
gtTreeFor:
gtTreeMondrianFor:
gtTreePlusSourceFor:

<<interface>>
ProcessingCodeBase

gtAbstractionsFor:
gtBytecodeFor:
gtHexDumpFor:
gtIntermediaryRepresentationFor:
gtOutputFor:
gtSlicesFor:
gtTranspilationFor:

ProcessingCanvas
asElement
gtOutputFor:
gtOutputShapesFor:

ProcessingRunStep
gtAbstractionsFor:
gtBytecodeFor:
gtOutputFor:
gtOverviewFor:
gtSourceCodeFor:
gtStackFor:
gtTranspilationPlusSourceFor:
gtVariablesFor:

ProcessingTranspilationSlice
gtSourceCodeFor:
gtTranspilationFor:
gtTranspilationPlusSourceFor:

<<forwards to>>

<<forwards to>>

<<forwards to>>

<<embeds>>

<<embeds>>

<<forwards to>>

Figure D.2: Diagram of all views provided and their implementors (methods set in italics are forwarded to
the actual implementor)
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gtHexDumpFor:
shows individual bytes for all compiled methods.

gtIntermediaryRepresentationFor:
uses the OpalCompiler to translate the transpiled Smalltalk code to IRInstructions (shown on
the left in figure C.7). gtIntermediaryRepresentationPlusSourceFor: combines this view with
gtSourceCodeFor:.

gtOutputFor:
displays a newly created ProcessingCanvasElement with attached event listeners for interactivity
(shown on the bottom right in figure C.1). gtOutputPlusSourceFor: combines this view with
gtSourceCodeFor:.

gtOutputShapesFor:
shows a list of all ProcessingCanvasShapes in the order they were drawn (shown in figure C.11).
Clearing the canvas with background(...) also clears this list.

gtSlicesFor:
shows a list of ProcessingTranspilationSlices with the corresponding expressions in Processing
source code and Smalltalk transpilation highlighted (shown in figure C.10).

gtSourceBytesFor:
shows a list of SmallIntegers corresponding to the bytes of the source code after UTF-8 encod-
ing (shown on the right in figure C.2) gtSourceBytesPlusSourceFor: combines this view with
gtSourceCodeFor:.

gtSourceBytesPlusCharsFor:
combines gtSourceCharsFor: and gtSourceBytesFor: (shown in figure C.2).

gtSourceCharsFor:
shows a list of Characters corresponding to each of the Processing source code’s characters (shown
on the left in figure C.2). gtSourceCharsPlusSourceFor: combines this view with gtSourceCodeFor:.

gtSourceCodeFor:
displays a fresh read-only editor instance from SmaCCParseNode>>gtSourceEditorWithHightlight:

with a custom BrTextEditorReadonlyWithNavigationMode mode (shown on the top left in figure
C.1, on the left in C.5, etc.).

gtStepsFor:
shows a list of ProcessingRunSteps and their own gtAbstractionFor: view, consisting of their
gtSourceCodeFor:, gtBytecodeFor:, gtVariablesFor:, gtStackFor:, and gtOutputFor: (shown
in figure C.9). ProcessingRunStep>>gtOverviewFor: is a simplified variant of this shown from the
Processing/Python snippet.

gtTokensFor:
shows a list of SmaCCTokens that were produced by ProcessingParser (shown on the left in figure
C.3). gtTokensPlusSourceFor: combines this view with gtSourceCodeFor:.

gtTokensPlusTreeFor:
combines gtTokensFor: with gtTreeFor: (shown in figure C.3).

gtTranspilationFor:
shows the transpiled Smalltalk code in GT’s code viewer, which separates methods and adds syn-
tax highlighting. gtTranspilationPlusSourceFor: combines this view with gtSourceCodeFor:

(shown in figure C.5).
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gtTranspilationPostfixFor: and gtTranspilationPrefixFor:
show a String produced by ProcessingTranspilerVariant in either its prefix or postfix modes
(both shown at the bottom in figure C.6).

gtTreeFor:
shows a treelist of PyRootNodes for expression roots and SmaCCTokens for structural tokens (shown
on the right in figure C.3).

gtTreeMondrianFor:
shows a horizontal GtMondrian tree produced by ProcessingTreeMondrianCreator (shown in
figure C.4). gtTreePlusSourceFor: combines this view with gtSourceCodeFor:.



E
Questionnaires

The following questionnaires are a reproduction of the originals, which were implemented in Microsoft
Forms, and are in German, since that’s the students’ teaching language.

E.1 Questionnaire for 6.2

Feedback zur heutigen Unterrichtssequenz
1. Wie hat Ihnen die heutige Unterrichtssequenz gefallen?

gar nicht 2—2—2—2—2 sehr gut

2. Welche Themen haben Sie heute alle bearbeiten können?

2 Arbeiten mit Glamorous Toolkit

2 Maschinensprache und Prozessor

2 Funktionen eines Compilers

2 Anhang

3. Wie sehr trauen Sie sich zu, die heutigen Inhalte jemand anderem zu erklären?
gar nicht 2—2—2—2—2 easy-peasy

4. Wie viele der Python-Progrämmchen haben Sie selbst verändert?

# Keines

# Eines

# Zwei bis drei

# Vier oder mehr

5. Was ist ein Stack?
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6. Was machen Lexer und Parser?

7. Wie gut hat die Lernumgebung für Sie funktioniert?
gar nicht 2—2—2—2—2 problemlos

8. Was hat Ihnen an der Lernumgebung gefallen?

9. Welche Änderungen an der Lernumgebung wünschen Sie sich für die nächste Klasse?

10. Wie hilfreich fanden Sie die Nebeneinanderstellungen der unterschiedlichen Schritte beim
Ausführen/Übersetzen eines Programms?
weglassen 2—2—2—2—2 bitte mehr davon

11. Beschreiben Sie in eigenen Worten: Wie wird ein Programm auf einem Prozessor ausgeführt?

12. Beschreiben Sie in eigenen Worten: Wie wird ein Programm in einer Hochsprache wie
Processing für den Prozessor aufbereitet?

13. Was hatte das heutige Thema mit Silizium, Transistoren, Gattern und Schaltungen zu tun?

Feedback zum Informatikunterricht der letzten zwei Jahre
14. Was war für Sie das Highlight vom Informatik-Unterricht? (Was hat Ihnen am meisten

Eindruck gemacht?)

15. Was ist Ihnen vom Informatik-Unterricht alles geblieben (einige Stichworte zum Stoff)?

16. Was hat Ihnen am Informatik-Unterricht gefallen?

17. Wenn Sie mir vor zwei Jahren einen Hinweis geben könnten: Was hätten Sie sich für den
Unterricht anders gewünscht?
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E.2 Questionnaire for 6.3

Feedback zur heutigen Unterrichtssequenz
1. Wie hat Ihnen die heutige Unterrichtssequenz gefallen?

gar nicht 2—2—2—2—2 sehr gut

2. Welche Themen haben Sie heute alle bearbeiten können?

2 Arbeiten mit Glamorous Toolkit

2 Human Resource Machine (aus Maschinensprache und Prozessor)

2 Lexer und Parser

2 Transpiler und Compiler

2 Optimierer

3. Wie sehr trauen Sie sich zu, die heutigen Inhalte jemand anderem zu erklären?
gar nicht 2—2—2—2—2 easy-peasy

4. Wie viele der Python-Progrämmchen haben Sie selbst verändert?

# Keines

# Eines

# Zwei bis drei

# Vier oder mehr

5. Weshalb kann ein Prozessor ein Processing-Programm nicht ohne Übersetzung ausführen

6. Was machen Lexer und Parser?

7. Wie gut hat die Lernumgebung für Sie funktioniert?
gar nicht 2—2—2—2—2 problemlos

8. Was hat Ihnen an der Lernumgebung gefallen?

9. Welche Änderungen an der Lernumgebung wünschen Sie sich für die nächste Klasse?

10. Wie hilfreich fanden Sie die Nebeneinanderstellungen der unterschiedlichen Schritte beim
Ausführen/Übersetzen eines Programms?
weglassen 2—2—2—2—2 bitte mehr davon

11. Beschreiben Sie in eigenen Worten: Wie wird ein Programm in einer Hochsprache wie
Processing für den Prozessor aufbereitet?
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12. Was hatte das heutige Thema mit Codierung und was mit Programmieren zu tun?

Feedback zum Informatikunterricht
13. Was war für Sie das Highlight vom Informatik-Unterricht? (Was hat Ihnen am meisten

Eindruck gemacht?)

14. Was ist Ihnen vom Informatik-Unterricht alles geblieben (einige Stichworte zum Stoff)?

15. Was hat Ihnen am Informatik-Unterricht gefallen?

16. Welche Änderungen wünschen Sie sich fürs kommende Schuljahr in Informatik?
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[27] Andrei Chiş, Tudor Gı̂rba, and Oscar Nierstrasz. Towards moldable development tools. In
Proceedings of the 6th Workshop on Evaluation and Usability of Programming Languages and Tools,
PLATEAU ’15, pages 25–26, New York, NY, USA, 2015. ACM.

[28] Luca Chiodini, Juha Sorva, and Matthias Hauswirth. Teaching programming with graphics: Pitfalls
and a solution. In Proceedings of the 2023 ACM SIGPLAN International Symposium on SPLASH-E,
SPLASH-E 2023, pages 1–12, New York, NY, USA, 2023. Association for Computing Machinery.

[29] Timothy R. Colburn. Software, abstraction, and ontology. The Monist, 82(1):3–19, 1999.

[30] William H. Doyle. A discovery approach to teaching programming. The Arithmetic Teacher,
32(4):16–28, 1984.

[31] Michael Egger. The law of leaky abstractions: A guide for the pragmatic programmer.
https://medium.com/@mesw1/
the-law-of-leaky-abstractions-a-guide-for-the-pragmatic-programmer-9bf80545c43f, 2024.
Accessed: 2025-06-16.

https://web.archive.org/web/*/https://tabreturn.github.io/code/processing/python/2022/08/02/overview_of_tools_combining_python_and_processing.html
https://web.archive.org/web/*/https://tabreturn.github.io/code/processing/python/2022/08/02/overview_of_tools_combining_python_and_processing.html
https://web.archive.org/web/*/https://www.fractolog.com/2024/08/how-does-glamorous-toolkits-pythonbridge-work/
https://web.archive.org/web/*/https://metr.org/Early_2025_AI_Experienced_OS_Devs_Study.pdf
https://web.archive.org/web/*/https://medium.com/@mesw1/the-law-of-leaky-abstractions-a-guide-for-the-pragmatic-programmer-9bf80545c43f
https://web.archive.org/web/*/https://medium.com/@mesw1/the-law-of-leaky-abstractions-a-guide-for-the-pragmatic-programmer-9bf80545c43f


BIBLIOGRAPHY 74
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