
In Conflict
An Empirical Study of Merge Conflict Resolutions in

Open-Source Projects

Bachelor’s Thesis

Yael van Dok

Supervised by

Prof. Dr. Timo Kehrer

M. Sc. Alexander Boll

Software Engineering Group

Institute of Computer Science

Faculty of Science

University of Bern

September 10, 2023

Abstract

Modern software development often entails the usage of a version control system such as

Git to facilitate collaborative work. Whenever work from multiple parties needs to be

integrated into a shared code base, so-called merge conflicts are bound to occur. Resolv-

ing such merge conflicts must be done manually by the developers, and doing so can be a

straining endeavour. In this study, we investigate the feasibility of a generative approach

to merge conflict resolutions that might ease the strain on the developers. By generating

all possible resolutions to the merge conflicts and presenting the best-performing to the

developers, their workload could be lessened. To investigate the feasibility, we analysed

7’866 open-source projects of various programming languages on GitHub. We deter-

mined whether the developers resolved the merge conflicts by using so-called derivable

resolutions, i.e., resolutions that can be derived from the preceding commit history, and

which in turn could be generated automatically using our approach. We performed this

analysis on multiple levels of granularity. We analysed 140’705 conflicting merges, which

in turn contained 644’203 conflicting files, which in turn contained 1’451’231 conflicting

chunks. We found that (i) in about 75 % of all cases, developers picked derivable conflict-

ing chunk resolutions, and in about 66 % of all cases, they picked derivable conflicting

file resolutions, and in about 35 % of all cases, they picked derivable conflicting merge

resolutions. Furthermore, we found that (ii) in about 80 % of all cases, conflicting merges

were found to have between one and five conflicting chunks. Their derivability rates lie

between 49 % and 20 %. Further, (iii) conflicting merges with one conflicting chunk con-

stituted about 45 % of all analysed conflicting merges, and their derivability rate lies at

about 49 %. These results indicate that the generative approach we envision is feasible,

as it could automate a substantial amount of the merging scenarios we encountered at

a low computational cost.

i

Contents

1 Introduction 1

1.1 Research Questions . 3

1.2 Main Contributions . 4

1.3 Structure of this Work . 4

2 Background and Motivation 5

2.1 Git . 5

2.1.1 Commits . 6

2.1.2 Branches . 7

2.1.3 Merging . 10

2.1.4 Merge Conflicts . 11

2.2 Merge Conflict Resolutions . 13

2.2.1 Example . 13

2.3 A Generative Approach to Merge Conflict Resolutions 15

2.3.1 Derivability . 15

2.3.2 Complexity . 17

2.3.3 Generational Cost . 18

3 Related Work 22

3.1 Buchser’s Study . 22

3.2 Differences of our Approach . 23

3.2.1 Expanded Analysis of Conflicting Chunk Resolutions 23

3.2.2 Consideration of Contexts and Derivability 23

3.2.3 No Limitations of Conflicting Chunk Counts 24

CONTENTS ii

3.3 Other Related Work . 24

4 Methodology 25

4.1 Experimental Subjects . 25

4.2 Analysis . 25

4.2.1 Workflow . 26

4.3 File Comparison . 29

4.3.1 Creation of the Section List of the URF 29

4.3.2 Section and Line Mapping . 31

4.3.3 Handling Unmapped Lines . 34

4.3.4 Handling Unmarked Sections . 37

4.3.5 Result . 38

4.4 Output . 39

5 Results 42

5.1 Overview of the Dimensions of our Study Sets 42

5.1.1 Projects . 43

5.1.2 Conflicting Merges . 44

5.1.3 Conflicting Files . 46

5.1.4 Conflicting Chunks . 48

5.1.5 Contexts . 49

5.2 Derivability . 50

5.2.1 Overview . 50

5.2.2 Categorised Derivability Rates . 53

5.3 Comparison with Buchser’s Results . 60

5.3.1 Categorised Resolution Rates . 62

5.3.2 Findings . 63

CONTENTS iii

6 Threats to Validity 66

6.1 Internal Validity . 66

6.1.1 Limitations of our File Comparison 66

6.1.2 Issues with JGit . 68

6.2 External Validity . 68

7 Discussion 70

7.1 RQ1: How often do developers pick derivable merge conflict resolutions,

on a conflicting chunk, conflicting file and conflicting merge level? 70

7.1.1 Findings . 71

7.2 RQ2: What are the specific properties of such derivable resolutions? . . . 72

7.2.1 Findings . 73

8 Conclusion and Future Work 75

Figures 80

Tables 84

Bibliography 85

1

1 Introduction

Modern software development is most often a collaborative effort. A team of developers

works on a project with a shared code base, changing, adding and removing work si-

multaneously. It is crucial to know what work was introduced when and by whom, such

that overseeing the development process and managing different versions of the project

is possible. Such an intertwined workflow introduces the need for an organisational tool

that keeps track of the shared resources’ state, dimension and history.

To this end, so-called version control systems (VCS) are used. [7] Multiple such tools

exist, all with their own special feature sets, advantages and disadvantages. At their

core, they all track the contents within a specified project and document their changes

over time. [5, p. 4-5]

In this work, we focus on Git, one of the most popular VCS.1 Git is an open-source

command-line tool that is used by both large software companies like Microsoft2 and

Google3 as well as independent developers. It is suited for many different types of

projects, as it is very versatile and places few limitations on the specifics of the projects

it can manage.

Git can be conceptualised as a set of tools that act on a specified file system, namely the

project folder. It provides features to add, alter and remove files and folders from within

1https://git-scm.com/
2https://github.com/microsoft/
3https://github.com/google/

https://git-scm.com/
https://github.com/microsoft/
https://github.com/google/

1 INTRODUCTION 2

that file system, and it keeps track of all these changes within a designated history.

Furthermore, it offers a branching system, making concurrent work on the same files

possible. As it is a distributed VCS, meaning that each developer hosts their own copy

of the project on their local machine, making them independent of a central server, it

lends itself well to remote and offline work. Supplementary features such as the tagging

system make version management more convenient.

For all the streamlining Git brings to collaborative development, there are still in-

stances where the developers’ workflow is interrupted and they must step in to resolve

issues. Namely, whenever multiple parties want to integrate their work to a shared code

base (in a process called merging), problems may arise. While Git provides its own

merging techniques that are able to automatically integrate a large number of changes

from multiple sources into a shared code base, in some cases, these algorithms fail, and

the developers are tasked with resolving the conflicts themselves. Such conflicts (called

merge conflicts) must be resolved manually, as Git’s merging algorithms do not account

for syntactical correctness or semantic meaning of the files they merge, and therefore

do not guarantee an error-free result. Ensuring these qualities in the subsequent merge

conflict resolution is an important task the developers must undertake themselves.

Resolving merge conflicts can be a straining endeavour. It pulls the developers out

of their normal workflow and forces them to take a step back to assess unfamiliar code

and find solutions to (sometimes) complex problems. [6] This disrupts the development

process, and therefore, it is in the developers’ interest to keep such instances of merge

conflicts at a minimum.

As of now, there is no other solution than resolving merge conflicts manually. In this

work, we investigate the feasibility of a new approach to resolving merge conflicts: By

generating all possible resolutions to all conflicts within a merge, ranking them in terms

of their syntactical and semantic correctness, and providing the best performing to the

developers to choose from, the developers’ workload could be reduced. Furthermore,

1 INTRODUCTION 3

the risk of introducing errors that occur easily when creating a manual resolution could

be lowered. Generating such merge conflict resolutions would be a complex task, as all

conflicts within all files within the merge must be taken into account, but the benefits

of automating their resolutions would warrant the effort.

This thesis investigates the feasibility of such a generative approach to merge con-

flict resolutions. To this end, we analysed a selection of open-source projects hosted

on GitHub4, and determined how the developers resolved the merge conflicts that arose

during these projects’ development. We analysed whether the developers resolved the

conflicts in a so-called derivable way, meaning that they stuck to resolutions that can

be generated (or derived) automatically from the parent merges and their files. We per-

formed this analysis on multiple levels of granularity (on a conflicting merge, conflicting

file and conflicting chunk level) to gain detailed insights into how exactly developers

resolve their conflicts. This insight allows us to draw conclusions about the feasibility of

a merge conflict resolution generator.

1.1 Research Questions

Our goal in this work is to investigate the feasibility of a merge conflict resolution

generator. To this end, we introduce the following research questions:

• RQ1: How often do developers pick derivable merge conflict resolutions, on a

conflicting chunk, conflicting file and conflicting merge level?

• RQ2: What are the specific properties of such derivable resolutions?

These questions relate to the feasibility in the following ways: If we find that in many

(or most) cases, developers pick derivable resolutions, then there is high chance for suc-

4https://github.com/

https://github.com/

1 INTRODUCTION 4

cess of such a merge conflict resolution generator, as it would automate the actions these

developers performed to resolve the merge conflicts (RQ1). If the derivable resolutions

they picked furthermore have specific properties like low numbers of merge conflicts

within the files of the merges, then this would be an indicator for the feasibility, as their

resolutions could be generated at low computational cost (RQ2).

1.2 Main Contributions

Our work contributes to the research in the following ways:

• We provide a tool (GitAnalyzerPlus) that allows for the analysis of merge conflict

resolutions within projects managed by Git on multiple levels of granularity.

• We provide quantitative results of such an analysis on a selection of 7’866 projects

hosted on GitHub.

• With these two results, we can partially decide the feasibility of a generative ap-

proach to resolving merge conflicts.

1.3 Structure of this Work

We go into detail about what exactly derivable merge conflict resolutions are and what

our generative approach to them looks like in Chapter 2. We go into related work to

such generative approaches in Chapter 3. We explain how we obtained the results of our

analysis in Chapter 4, and the results of this analysis are shown in Chapter 5. Possible

threats to the validity of our results are found in Chapter 6, and a discussion of our

results is found in Chapter and 7. We conclude our study and discuss possible future

work in Chapter 8.

5

2 Background and Motivation

This Chapter provides the necessary theoretical background on Git and its merge proce-

dure. It further introduces the terminology we will use in the subsequent Chapters, and

at last, it goes into the details of the generative approach to merge conflict resolutions

whose feasibility we study in this work.

2.1 Git

Launched in 2005 and still under active open-source development, Git has gathered huge

popularity over the years, to the result that it is the most widely used VCS in open-

source software development spaces nowadays. Being a command-line tool, it is available

for all major operating systems and runs on a multitude of different hardware. Many

IDEs and code editors integrate Git’s functionalities into their interfaces, and hosting

sites such as GitLab5 and GitHub6 are specifically designed to host Git projects and make

use of its features.

Git offers many features and tools that facilitate version management and collaborative

work. For the sake of brevity, we focus only on the components that are relevant to this

thesis here, namely the branching and commit system. All of the information provided

5https://about.gitlab.com/
6https://github.com/

https://about.gitlab.com/
https://github.com/

2 BACKGROUND AND MOTIVATION 6

here is taken from Pro Git [3]. A revised and updated version of said book can be found

on Git’s official website.7

2.1.1 Commits

One of the central tasks of any VCS is the tracking of a project’s evolution over time,

i.e., the tracking of its files and their changing versions. [7] Git achieves this by using

so-called commits. A commit is essentially a snapshot of the project at a specific point in

time. It includes information about the current project state, namely its folder structure

and the files and their contents within. Commits are issued by developers, and upon

their creation, they are inserted into the project’s history, the so-called commit history.

Whenever a developer sets up a new project with Git, an initial commit is issued, and

this commit marks the root of the project’s commit history. Subsequent commits are

appended to this root commit.

A new commit can only be issued if there is change between the project’s current

state and the state specified in the most recent commit. Such changes include additions

or deletions of and alterations to files. Whenever such a change has occurred, and the

developer has created a commit, the commit is inserted into the history, marking a new

state of the project. This state then becomes the current one, and a new commit can

only be issued if it differs from this most recent state.

It is important to note that the developer can restore any project state included in

the commit history by checking out the commit in question. This action will revert

all project resources back to their state specified in the commit, making it possible to

retrace every step of the project’s history.

7https://git-scm.com/book/en/v2

https://git-scm.com/book/en/v2

2 BACKGROUND AND MOTIVATION 7

2.1.1.1 Example

To illustrate the concepts so far, we give the following example: Developer Alice wants

to set up a new project with Git. She creates her first files (main.py and cfg.py) and

issues a first commit A (which includes said files), thereby setting up the main branch

(see Section 2.1.2). She then makes some changes to main.py. Its state now differs from

the one specified in commit A. She includes these changes in a new commit B which is

appended to commit A.

A
+ main.py
+ cfg.py

B
~ main.py

main

Figure 2.1: Commit history of Alice’s project. The alphabetically named boxes represent
the issued commits with their included changes to the specified files. + indicates a
file being added, ~ indicates a file being altered, - indicates a file being deleted. The
arrows in between the commits illustrate the progression of the project’s history. The
blue boxes represent branches. The arrows extending from them to certain commits
represent their current location.

2.1.2 Branches

To structure the commit history and allow for concurrent development on the same

files, commits are placed within so-called branches. Branches mark specific chains of

development. Upon creation of a project, a default branch is set up. This branch is

typically called the main (in older versions master) branch. If the developer wants to

work on a specific issue and does not want to include their changes in the main branch

2 BACKGROUND AND MOTIVATION 8

(as the convention in many software development teams is that this branch is reserved

for major versions of the system only), they create a new branch and switch to it. This

new branch marks a deviation from the current branch (the main branch) in the project’s

history. Starting from the commit they created the branch from, a divergent path of

commit history is opened up, and any commits they make will be placed within that

branch.

Commits on different branches do not interfere with one another, since they are kept

in separate parts of the history. They are not aware of each other’s existence, and they

only interact whenever the developer issues a merge, a concept that we will go into later.

It is important to note that branching is not restricted to the main branch. Any branch

in the history can be branched from, allowing for multiple levels of sub-branches.

2.1.2.1 Example

We use our previous example to illustrate the concept of branching:

Alice’s project so far includes the default branch main which contains two commits A

and B. She now wants to work on some special features that she doesn’t want to include

in the main branch (yet). Therefore, at commit B, the latest commit of branch main, she

creates a new branch dev and switches to it. The subsequent commits C (alterations to

main.py, insertion of db.py) and D (alterations to db.py) are placed within this branch,

and the main branch is not aware of their existence and any changes they include. After

she has completed her work on dev, she switches back to main, and issues commits E

(insertion of alg.py) and F (alterations to main.py, deletion of cfg.py). These commits

are not known to dev either, as its history has deviated from main at commit B. Finally,

she switches back to branch dev, and creates another branch called exp. On this branch,

she issues a commit G, which includes alterations done to main.py. Like the dev branch,

branch exp is not aware of any commits done to main after their deviation point at

2 BACKGROUND AND MOTIVATION 9

commit C, and it will also not be aware of any new commits added in branch dev after

commit D.

A
+ main.py
+ cfg.py

B
~ main.py

C
+ db.py
~ main.py

D
~ db.py

E
+ alg.py

F
~ main.py
- cfg.py

dev

main

G
~ main.py

exp

Figure 2.2: Updated commit history of Alice’s project. The alphabetically named boxes
represent the issued commits with their included changes to the specified files. +
indicates a file being added, ~ indicates a file being altered, - indicates a file being
deleted. The arrows in between the commits illustrate the progression of the project’s
history. The blue boxes represent branches. The arrows extending from them to
certain commits represent their current location.

As can be seen in Figure 2.2, the commit history of a Git project is a rooted connected

directed acyclic graph.8 The initial commit A represents the root of this graph. Each

commit is a node and it represents all changes of the project from the commit’s parent(s),

i.e., its direct predecessor nodes.

To build a complete snapshot of the project when checking out a certain commit,

Git replays the cumulative changes of the complete commit path from the root to the

specified commit. As an example, to build the snapshot of commit D, Git will replay the

changes from the root commit A, commit B commit C and lastly, commit D.

8https://en.wikipedia.org/wiki/Directed_acyclic_graph

https://en.wikipedia.org/wiki/Directed_acyclic_graph

2 BACKGROUND AND MOTIVATION 10

2.1.3 Merging

While commits on separate branches do not affect one another, at some point, developers

may want to merge one branch into the other to combine their changes. To do so, they

issue a merge. A merge is a command that instructs Git to include all the changes made

in one branch in another one. Git offers several merging algorithms to achieve this. In

this work, we only consider the default merge strategy, namely the three-way merge,

using the default merge algorithm ORT.9

The three-way merge strategy takes the latest commit of the branch to be merged,

the latest commit of the branch to be merged into, and the latest commit that is present

in both branches (the base commit), i.e., the one from where the two branches deviated.

Git processes all the commits on both branches starting from the deviation point (i.e.,

the base commit, the last common ancestor in the commit history), and, where possible,

integrates all the changes together, resulting in a new commit that contains all the

changes from both branches. The resulting files are then included in this new commit,

the so-called merge commit. In the commit history, such a merge is represented as the

union of the two branches.

2.1.3.1 Example

To illustrate such a merge, we adapt our example from earlier:

Alice’s project has three branches main, dev and exp. She has issued work on all

branches, but now, she wants the work from dev to be included in main. To this end,

she switches to branch main (on commit F) and starts a merge of branch dev into branch

main. Git considers the latest commit on dev (commit D), the latest commit on main

(commit F), and the latest commit both branches share (commit B). It gathers up all

9https://git-scm.com/docs/git-merge

https://git-scm.com/docs/git-merge

2 BACKGROUND AND MOTIVATION 11

the changes on dev from commit B to D, as well as all the changes on main from commit

B and to F, and it tries to replay them all on the commit B. If successful, this will lead

to a new commit H which includes all the changes from main and dev, applied to their

common ancestor commit B. The branch exp is not affected by this merge, as it deviates

from dev on commit D, and its changes will not be included in the merge.

A
+ main.py
+ cfg.py

B
~ main.py

C
+ db.py
~ main.py

D
~ db.py

E
+ alg.py

F
~ main.py
- cfg.py

dev

main

G
~ main.py

exp

H (merge)
~ main.py

Figure 2.3: Three-way merge of branch dev into branch main. As before, the alphabet-
ically named boxes represent the issued commits with their included changes to the
specified files. + indicates a file being added, ~ indicates a file being altered, - indicates
a file being deleted. The arrows in between the commits illustrate the progression of
the project’s history. The blue boxes represent branches. The arrows extending from
them to certain commits represent their current location.

2.1.4 Merge Conflicts

Git merges files on a line-basis, meaning that Git processes each file and tries to combine

all changed lines within all commits into one final file. It is during this process where

problems may arise, namely when both branches contain commits that change the same

files on the same lines. In this case, Git does not know which change (i.e., which code from

which branch) to include in the file. Git’s merging algorithms make no considerations

to syntax or semantics, meaning that there is no heuristic for Git to determine which

changes to include in the file. Whenever such a merge conflict occurs, Git signals to the

developer that they must step in to resolve the issue. They do so by examining the files

2 BACKGROUND AND MOTIVATION 12

in question, creating working versions of the code, and committing the result. As soon

as they have committed, the merge is considered resolved.

2.1.4.1 Example

To illustrate what such merge conflicts look like, we, again, use our previous example:

Alice has issued the merging of branch dev into branch main. Some of the changes on

branch dev (namely the insertion and alteration of db.py in commit C and commit D)

will be integrated without issues, since these files exist only on dev and therefore do not

interfere with any files on main. Analogously, the insertion of alg.py on main in commit

E integrates without issues, as does the deletion of cfg.py in commit F, as no alterations

to this file were issued on dev. However, as both branches issue changes to main.py (in

commit C and F) on the same lines, a merge conflict ensues, and Alice is tasked with

resolving it.

1 def main():
2 <<<<<<< main (HEAD)
3 print(‘Hello!’)
4 =======
5 print(‘Greetings!’)
6 >>>>>>> dev
7
8 if __name__ == ‘__main__’:
9 main()

Figure 2.4: The main.py file during the merge. Non-conflicting code is overlayed green,
whereas conflicting code is overlayed red. Git’s merging markers are overlayed grey.

Git gathers all conflicting code within so-called merging markers to visually highlight

the conflict. In our example, Git adds merging markers in lines 2, 4 and 6. Between

merging marker 1 (line 2) and merging marker 2 (line 4) lies the code that was issued

in branch main, and between merging marker 2 (line 4) and merging marker 3 (line 6)

lies the code that was issued in branch dev.

In the subsequent work, we use the term conflicting chunk (CC) for the sequence

of lines from merging marker 1 to merging marker 3 (lines 2 up to and including 6 in

2 BACKGROUND AND MOTIVATION 13

our example). One conflicting chunk represents one merge conflict. We call the file

the conflicting chunk belongs to (main.py in our example) the conflicting file (CF), and

analogously, we call the merge the conflicting file belongs to (commit H in our example)

the conflicting merge (CM).

It is important to note that in this example, there is only one conflicting chunk within

the conflicting file, as only one segment of the code conflicts. However, in case of multiple

conflicting code segments separated by non-conflicting code, the conflicting file will have

multiple conflicting chunks.

2.2 Merge Conflict Resolutions

To resolve such conflicting chunks, the developers have several options. We call these

options conflicting chunk resolutions (CCR). They can be grouped into three main cat-

egories.

First, they may pick the code from the first branch, disregarding the the code from the

second branch, or vice versa. We denote such a resolution a canonical conflicting chunk

resolution. Second, they may opt to include both code segments in the resulting file,

or none at all (meaning that they delete all conflicting lines). In this case, we call the

resolution a semi-canonical conflicting chunk resolution. The third option they have is

to disregard both options and include their own custom code. We call such a conflicting

chunk resolution non-canonical.

2.2.1 Example

In our example, there is only one conflicting chunk, which Alice can resolve in the

following ways:

2 BACKGROUND AND MOTIVATION 14

canonical

1 def main():
2 print(‘Hello!’)
3
4 if __name__ == ‘__main__’:
5 main()

1 def main():
2 print(‘Hello!’)
3 print(‘Greetings!’)
4
5 if __name__ == ‘__main__’:
6 main()

1 def main():
2 print(‘Greetings!’)
3
4 if __name__ == ‘__main__’:
5 main()

semi-canonical

1 def main():
2
3 if __name__ == ‘__main__’:
4 main()

1 def main():
2 print(‘Greetings!’)
3 print(‘Hello!’)
4
5 if __name__ == ‘__main__’:
6 main()

1 def main():
2 print(‘Good day!’)
3
4 if __name__ == ‘__main__’:
5 main()

non-canonical

...

Figure 2.5: Possible conflicting chunk resolutions of the conflicting chunk within main.py,
grouped within the three categories.

Whatever conflicting chunk resolution (CCR) Alice chooses to resolve the conflict, as

soon as she has, she commits the resulting file. This file represents a conflicting file

resolution (CFR). As there was only one conflicting file within the conflicting merge

(which she has now resolved), the merge is complete, and the resulting commit is a

conflicting merge resolution (CMR). This marks the merging process as complete, and

she can carry on with her work.

In this example, there is only one conflicting file within the conflicting merge, with

only one conflicting chunk in its code. In reality, there may be multiple conflicting files

with multiple conflicting chunks each, which makes resolving the conflicts more complex.

The conflicting files and conflicting chunks may be interlinked or depend on each other

syntactically or semantically, necessitating more considerations when resolving them,

such that in the end, syntactical and semantic integrity of all files is maintained.

2 BACKGROUND AND MOTIVATION 15

2.3 A Generative Approach to Merge Conflict Resolutions

As stated in Chapter 1, we want to investigate the feasibility of a tool that automatically

generates all possible merge conflict resolutions to a conflicting merge. We laid out in

Section 2.1.4 what conflicting merges, conflicting files and conflicting chunks are and how

they come about. Now, we will use the terminology and concepts introduced in Section

2.2 (conflicting chunk resolutions and their three categories, conflicting file resolutions

and conflicting merge resolutions) to illustrate the generative approach whose feasibility

we want to investigate.

2.3.1 Derivability

A tool that automatically generates merge conflict resolutions can only generate resolu-

tions that can be derived from existing resources, i.e., from the project’s commit history.

Therefore, we introduce the following concepts.

2.3.1.1 Derivability of Conflicting Chunk Resolutions

The canonical and semi-canonical conflicting chunk resolutions introduced in Section 2.2

are pre-determined and can be derived from the existing commit history, as they only

contain code from the three file versions used in the three-way-merge (i.e., the files from

both parent commits and the file from their common ancestor commit). We therefore

call these conflicting chunk resolutions derivable. As is illustrated in Figure 2.5, there

are two canonical conflicting chunk resolutions, and three semi-canonical ones. Non-

canonical conflicting chunk resolutions are custom-made by the developer at the time

of the merge, and therefore, they cannot be derived from the preceding commit history.

We call this category of conflicting chunk resolutions non-derivable. In theory, there

are infinitely many such non-canonical conflicting chunk resolutions, as the developer

has infinitely many choices to resolve the conflict such that syntactical and semantic

correctness of the code is maintained.

2 BACKGROUND AND MOTIVATION 16

2.3.1.2 Derivability of Conflicting File Resolutions

We expand this concept of derivability to conflicting file resolutions by stating the fol-

lowing: A conflicting file resolution is derivable if all the conflicting chunks within were

resolved in a derivable manner, i.e., if they were resolved canonically or semi-canonically.

Further, it must hold that none of the non-conflicting lines that surround these conflict-

ing chunks were changed. This is necessary, because even if all conflicting chunks within

the conflicting file are resolved in a derivable manner - if the code surrounding them

has changed, then the file itself cannot be derived automatically from its parent files,

making its automatic generation impossible.

In the subsequent work, we will refer to such non-conflicting code segments within

conflicting files as contexts. Therefore, to reiterate, a conflicting file resolution is derivable

if all its conflicting chunks were resolved in a derivable way and none of its contexts were

changed. If this does not hold, the conflicting file resolution is non-derivable.

1 def main(): CONTEXT
2 <<<<<<< main (HEAD) CONFLICTING
3 print(‘Hello!’) CHUNK
4 =======
5 print(‘Greetings!’)
6 >>>>>>> dev
7 CONTEXT
8 if __name__ == ‘__main__’:
9 main()

Figure 2.6: Illustration of the concept of contexts, applied to the main.py file from our
example. Line 1 marks the first context, lines 2-6 mark the conflicting chunk, and
lines 7-9 mark the second and last context.

2.3.1.3 Derivability of Conflicting Merge Resolutions

As we laid out in Section 2.2, a conflicting merge can have multiple conflicting files. We

therefore expand the concept of derivable conflicting file resolutions to conflicting merge

resolutions by stating that a conflicting merge resolution is derivable if all its conflicting

2 BACKGROUND AND MOTIVATION 17

file resolutions are derivable. If at least one of them is non-derivable, the conflicting

merge resolution itself is non-derivable.

2.3.2 Complexity

Using this concept of derivability on multiple levels, we can now illustrate what the

generative approach whose feasibility we investigate looks like. Namely, we envision a

merge conflict resolution generator that generates derivable conflicting merge resolutions.

As detailed in the previous Section 2.3.1, derivable conflicting merge resolutions consist

of derivable conflicting file resolutions. Any such derivable conflicting file resolution in

turn consists of derivable conflicting chunk resolutions.

These considerations have the following implications for the size of the set of derivable

conflicting merge resolutions:

Notation 2.1
Let m be a conflicting merge with conflicting files fi for i ∈ {1, ..., n} where n ∈ N≥1.
Every conflicting file fi has conflicting chunks cij for j ∈ {1, ..., mi} where mi ∈ N≥1.

Let RCC(cij) be the set of resolutions for conflicting chunk cij . As there are five
derivable resolutions (two canonical ones and three semi-canonical ones) for every
conflicting chunk, it holds that:

|RCC(cij)| = 5

Let RCF (fi) be the set of resolutions for conflicting file fi. As every derivable
conflicting file resolution is a combination of such derivable conflicting chunk reso-
lutions, it holds that:

|RCF (fi)| =
mi∏
j=1

|RCC(cij)| =
mi∏
j=1

5 = 5mi

Let RCM (m) be the set of resolutions for conflicting merge m. As every derivable
conflicting merge resolution is again a combination of such derivable conflicting file
resolutions, it holds that:

2 BACKGROUND AND MOTIVATION 18

|RCM (m)| =
n∏

i=1
|RCF (fi)| =

n∏
i=1

5mi = 5
∑n

i=1 mi = 5K with K =
n∑

i=1
mi

2.3.3 Generational Cost

As shown in Notation 2.1, the cardinality of the set of derivable conflicting merge resolu-

tions grows exponentially with the number of conflicting chunks. This can pose a serious

issue for finding the best solution in this set, since simply generating all derivable con-

flicting merge resolutions would be very costly as the number of conflicting chunks rises.

A tool that generates all possible derivable conflicting merge resolutions might therefore

only be viable if the amount of conflicting chunks is low. This consideration motivates

our second Research Question (see Section 1.1). If our study finds that most conflicting

merges only contain a low amount of conflicting chunks, then this bodes well for the

feasibility of such a generator.

2.3.3.1 Dependency of Merge Conflicts

Simply generating the whole set of derivable conflicting merge resolutions may not be

viable for conflicting merges with many conflicting chunks. Therefore, it is important

to consider strategies that limit the resolution set of the generation. One such strategy

is grouping conflicting chunks that depend on each other syntactically or semantically

together and generating their resolutions independently of other non-dependent chunks.

This reduces the complexity of the generation by breaking up the generation of all con-

flicting merge resolutions into sub-generations of conflicting chunk and conflicting file

resolutions that can be conducted independently of each other. Further, by inspecting

the nature of the dependencies between these conflicting chunks, one can exclude con-

flicting file resolutions and conflicting merge resolutions that will lead to invalid code

from the generation beforehand. This will further limit the size of the resolution set.

2 BACKGROUND AND MOTIVATION 19

We illustrate these strategies by giving three examples:

Example 2.1
Suppose that there is a conflicting merge m from branch A into branch B. m contains
one conflicting file f which contains two conflicting chunks c1 and c2. Suppose that
branch A places within these chunks some code segments that depend on each other.
Namely, in c1, some method func is defined, and in c2, said function func is invoked.
In this case, a resolution for c2 cannot be proposed independently of the resolution
of c1.

In cases like Example 2.1, all conflicting chunks depend on each other. When gener-

ating the resolutions for this conflicting merge, these dependencies must be taken into

account, and the obvious brute-force strategy to account for them is to simply generate

all derivable conflicting merge resolutions. As explained in Notation 2.1, this computa-

tion grows exponentially and is only viable for small conflicting chunk counts. In this

Example, many of these generated conflicting merge resolutions will be invalid, namely

when func is invoked in the resolution of c2, but the resolution of c1 does not contain

the definition of func.

In such cases, one could investigate the nature of the dependencies beforehand to

determine what combinations of conflicting chunk resolutions will lead to invalid results.

One can then exclude them from the resolution set of the generation. In our Example

2.1, one could exclude conflicting merge resolutions that invoke method func in the

resolution of c2 while not including the method definition in the resolution of c1. This

could dramatically reduce the resolution set.

Example 2.2
Suppose that there is a conflicting merge m from branch A into branch B. m contains
one conflicting file f which contains two conflicting chunks c1 and c2. Suppose that
branch A places within these chunks some code segments that do not depend on
each other. Namely, in c1, it sets the background colour of some element within a
graphical application, and in c2, it alters the name of another element within said

2 BACKGROUND AND MOTIVATION 20

application. In this case, resolutions for c2 can be proposed independently of the
resolution of c1, as c2 does not reference any variables used in c1 and vice versa.

In cases like Example 2.2, as the conflicting chunks do not depend on each other, one can

independently generate their resolutions. Afterwards, one can test which resolution for

one conflicting chunks is the best performing by fixing the resolution for the other con-

flicting chunk, and analysing the different resolutions. Once such an optimal resolution

is found, one can then fix this resolution and repeat the process for the other conflicting

chunk.

In our Example 2.2, one could first generate the conflicting chunk resolutions for c1

and c2, and find a combination that compiles. Then, one could fix a resolution for c1 and

compile and test all different resolutions for c2 independently. Next one can fix the best

resolution for c2 and try out all resolutions for c1. This would result in linear growth,

once a compiling combination of conflicting chunk resolutions is found.

Example 2.3
Suppose that there is a conflicting merge m from branch A into branch B. m

contains two conflicting files f1 and f2, which in turn contain conflicts c1 and c2.
Suppose that f1 and f2 belong to two entirely separate programs found within the
same project. In this case, the resolutions for c1 and c2, and subsequently f1 and f2

do not depend on each other at all.

In cases like Example 2.3, as the conflicting chunks and conflicting files do not depend

on each other at all, it is possible to generate the derivable conflicting file resolutions for

both conflicting files independently of each other, and determine for each resolution set

which one is the best performing.

In our Example 2.3, one could therefore generate the conflicting file resolutions for

both f1 and f2, and test for each resolution set which one is the best performing. As

both conflicting files only contain one conflicting chunk, this would result in linear growth

of the generation.

2 BACKGROUND AND MOTIVATION 21

2.3.3.2 Implications for our Study

As we do not perform any syntactical or semantic analysis of the merge conflicts in our

study, we cannot say in how many cases of conflicting merges their conflicting chunks

depend on each other, and further, of what nature these dependencies are. Therefore,

we cannot determine in how many cases the strategies outlined above could be applied.

However, we can investigate their feasibility in terms of complexity. If our study

finds that most conflicting merges only contain a low number of conflicting chunks, this

bodes well for the feasibility, because even in the worst case scenario where all conflicting

chunks depend on each other, and the whole set of derivable conflicting merge resolutions

would need to be generated, this generation could be performed at low computational

cost. These considerations are reflected in our second Research Question (see Section

1.1).

22

3 Related Work

Before we discuss the methodology of our study, we go into other work that has been

done in the realm of merge conflict resolution. As our study is a direct continuation

of another empirical study conducted by Severin Buchser [2], we lay our main focus on

how our approach differs and goes beyond said study’s approach, mitigating several of

its limitations in the process. Afterwards, we will briefly discuss other work.

3.1 Buchser’s Study

In his study, Buchser analysed how developers resolve their merge conflicts on a conflict-

ing chunk level, conflicting file and conflicting merge level. He analysed 8000 open-source

projects hosted on GitHub. The goal of his study was identical to ours - investigating

the feasibility of a merge conflict resolution generator.

He analysed the conflicting chunks found within the conflicting merges and their res-

olution rates - namely if they were resolved canonically or non-canonically. Using this

conflicting chunk resolution analysis, he determined whether the conflicting file reso-

lutions and further the conflicting merge resolutions were canonical, i.e., whether they

only contained canonical conflicting chunk resolutions.

He found that while 80.63 % of all conflicting chunks were resolved canonically, only

about 46.29 % of conflicting file resolutions and 34.11 % of conflicting merge resolutions

were made up using only canonical conflicting chunk resolutions.

3 RELATED WORK 23

3.2 Differences of our Approach

Our work builds directly on top of Buchser’s, but it differs on both a conceptual and

technical level. We will discuss these differences here. The details of our methodology

can be found in Chapter 4, and we provide a comparison of our study results with

Buchser’s in Section 5.3.

3.2.1 Expanded Analysis of Conflicting Chunk Resolutions

In his study, Buchser determined whether conflicting chunks were resolved canonically

or non-canonically. Our analysis goes further and determines whether conflicting chunks

were resolved canonically, semi-canonically or non-canonically. This allows for a more

detailed insight into the conflicting chunk resolutions, and therefore, into the merging

behaviour of the developers.

Furthermore, our analysis takes the relative position of each conflicting chunk within

the conflicting file into account when analysing its resolutions. Whereas Buchser’s ap-

proach marks a conflicting chunk as being resolved canonically if its code is found any-

where in the conflicting file resolution, our approach only does so if it is found at its

correct position within the code. This eliminates the possibility of false positives when

marking canonical conflicting chunk resolutions.

3.2.2 Consideration of Contexts and Derivability

As we detailed in Section 2.3.1, in order for a conflicting file resolution to be deriv-

able, and therefore possible to be automatically generated, all conflicting chunks found

within must be resolved canonically or semi-canonically, and all contexts must remain

unchanged.

Buchser did not consider contexts within his study. He only analysed the conflicting

chunk resolutions and did not determine whether contexts were changed. As our ap-

proach also takes them into account, it paints a more complete picture of how developers

3 RELATED WORK 24

resolve their merge conflicts and whether they stick to derivable resolutions or not. This,

in turn, allows us to investigate the feasibility of a merge conflict resolution generator

more accurately.

3.2.3 No Limitations of Conflicting Chunk Counts

In his study, Buchser only analysed conflicting merges with at most 12 conflicting chunks.

This limit was set due to the approach and implementation of his analysis tool. Our anal-

ysis approach is different, and it eliminates this limitation, allowing for unconstrained

study sets. Furthermore, the implementation of our analysis tool guarantees better scal-

ability in general, as it uses multi-threading and result aggregation within databases (see

Chapter 4).

3.3 Other Related Work

Apart from the study we discussed above, not much work has gone into the analysis

of merge conflict resolutions. Ghiotto et al. [4] conducted an empirical study of merge

conflicts found within the commit histories of more than 2’731 open source Java projects.

First, they analysed five Java projects and their about 1’000 conflicting merges manually,

to gather insight into the types of merge conflicts most often encountered. Then, they

ran an automated analysis of 2’731 Java projects. Within these projects, they analysed

25’328 conflicting merges, which included 175’805 conflicting chunks. Their main findings

were that 87 % (automated analysis) and 83 % (manual analysis) of all conflicting chunks

contained code that could be wholly derived from the parent files. Further, about 60 %

of conflicting merges contained more than one conflicting chunk, and in 14 % to 46 % of

these cases, the conflicting chunks were dependent on each other.

25

4 Methodology

This Chapter details our experimental setup and lays out the analysis algorithm we use

to gather our results.

4.1 Experimental Subjects

To get comparable results to Buchser’s study, we chose to use the same projects that

he analysed in his work. He specified six programming languages (Python, Java, C++,

Go, JavaScript and TypeScript), and for each of said languages, he selected 500 of the

most highly rated projects on GitHub that are marked as belonging to that language. In

addition, he made two selections of 2500 projects with randomly selected names. The

first selection includes projects with high ratings, the other includes projects with low

ratings. In both of these cases, the projects could use any programming language. This

leads to a total of 8000 projects.

In the meantime of our study and his, 1.675 % of the these projects were deleted or

did otherwise become unavailable on GitHub. We opted not to replace them with other

projects, and so we analysed the remaining 7’866 projects.

4.2 Analysis

We forked Buchser’s tool GitAnalyzer and adapted it to allow for our more elaborate

approach (see Section 3.2). We called it GitAnalyzerPlus to reflect its origin. GitAna-

lyzerPlus is a command-line tool written in Java which allows for the cloning and merge

4 METHODOLOGY 26

conflict analysis of Git projects. It uses the GitHub REST API10 to acquire the reposito-

ries and it uses JGit11, an implementation of Git written in Java, to run the merge conflict

resolution analysis detailed below. The source code is accessible for faculty members on

the GitLab server of the University of Bern.12

4.2.1 Workflow

GitAnalyzerPlus takes in a list of GitHub projects, clones their repository to the user’s

local machine and runs its merge conflict resolution analysis on each project. The merge

conflict resolution analysis runs multi-threaded on multiple levels (on a project level, on

a conflicting merge level, and on a conflicting file level), and its results are stored in a

local database.

4.2.1.1 On Project Level

For every project, all commits in the history that are marked as merges are scheduled

for analysis. We limit our analysis to merges with two parents, as Buchser found in his

work that this type of merge makes up the vast majority of all merges. [2, p. 27]

4.2.1.2 On Conflicting Merge Level

For every merge, its parent commits are pulled up and re-merged using Git’s default

merging strategy (three-way merge with the ORT merging algorithm). If the resulting

merge contains conflicts, meaning that at least one of the files within the merge could not

be merged together from its parent files and their common ancestor without conflicts,

10https://docs.github.com/en/rest?apiVersion=2022-11-28
11https://eclipse.dev/jgit/
12https://gitlab.inf.unibe.ch/SEG/theses/git-analyzer-plus

For non-faculty members: If you would like to access the code, contact us via email at
yael.vandok@students.unibe.ch.

https://docs.github.com/en/rest?apiVersion=2022-11-28
https://eclipse.dev/jgit/
https://gitlab.inf.unibe.ch/SEG/theses/git-analyzer-plus
mailto:yael.vandok@students.unibe.ch

4 METHODOLOGY 27

then the merge is marked as a conflicting merge, and the files that contain said conflicts

are marked as conflicting files.

4.2.1.3 On Conflicting File Level

For every conflicting file, its merge conflicts and the file variants found in the commits

involved in the three-way merge (i.e., the file variants found in both parent commits of

the conflicting merge and their common ancestor) are formatted together. This results

in a file that is structurally equivalent to the one Git uses during the merging process

(see Figure 2.4). This file includes the conflicting chunks the developer had to resolve

during the merge. We dub this file the unmerged resolution file (URF).

The file variant found within the conflicting merge itself is the one the developer com-

mitted to resolve these conflicting chunks. We dub this file variant the actual resolution

file (ARF).

4 METHODOLOGY 28

A

B

BASE FILE

FROM BASE COMMIT AN BRANCH A

1 def main():

2 print(‘Base commit A!’)

3

4 if __name__ == ‘__main___’:

5 main()

PARENT FILE #2
FROM PARENT COMMIT AN BRANCH B

1 def main():
2 print(‘Parent commit B!’)
3
4 if __name__ == ‘__main___’:
5 main()

PARENT FILE #1

FROM PARENT COMMIT AN BRANCH A

1 def main():

2 print(‘Parent commit A!’)

3

4 if __name__ == ‘__main___’:

5 main()

UNMERGED RESOLUTION FILE (URF)

1 def main():

2 <<<<<<< BRANCH A (HEAD)

3 print(‘Parent commit A!’)

4 =======

5 print(‘Parent commit B!)

6 >>>>>>> BRANCH B

7 if __name__ == ‘__main___’:

8 main()

ACTUAL RESOLUTION FILE (ARF)

FROM MERGE COMMIT ON BRANCH A

1 def main():

2 print(‘Merge commit!)

3

4 if __name__ == ‘__main___’:

5 main()

Figure 4.1: Different file variants involved in the recreation of a conflicting merge of
branch B into branch A. The base file variant and both parent file variants are format-
ted together along with their merge conflicts, resulting in the unmerged resolution file
(URF) which contains the conflicting chunks. The file variant found in the conflicting
merge, i.e. the actual resolution file (ARF), contains the resolutions to these conflict-
ing chunks. Note that all files except the unmerged resolution file are included in the
project’s commit history in their respective commits.

As our goal is to determine how the developers did resolve the merge conflicts, we

compare the unmerged resolution files and the actual resolution files to determine how

they differ. This gives us insight into whether the conflicting chunks were resolved in

a derivable manner and whether the contexts have changed, which in turn allows us to

determine whether the conflicting file resolution is derivable.

4 METHODOLOGY 29

4.3 File Comparison

The comparison between an unmerged resolution file (subsequently called URF) and its

associated actual resolution file (subsequently called ARF) happens in multiple steps. To

illustrate them, we will use a running example with the two files specified below.

UNMERGED RESOLUTION FILE (URF) SECTION INDEX MAPPED
1 def main()
2 # say hello
3 <<<<<<< BRANCH A (HEAD)
4 print(‘Hello!’)
5 =======
6 print(‘Greetings!’)
7 >>>>>>> BRANCH B
8
9 # give compliment
10 <<<<<<< BRANCH A (HEAD)
11 print(‘Your shoes are nice!’)
12 =======
13 print(‘Your shirt is nice!’)
14 >>>>>>> BRANCH B
15
16 # give comment on the weather
17 <<<<<<< BRANCH A (HEAD)
18 print(‘It’s warm outside!’)
19 =======
20 print(‘It’s cold outside!’)
21 >>>>>>> BRANCH B
22
23 # say goodbye
24 <<<<<<< BRANCH A (HEAD)
25 print(‘See you!’)
26 =======
27 print(‘Goodbye!’)
28 >>>>>>> BRANCH B
29 if __name__ == ‘__main___’:
30 main()

ACTUAL RESOLUTION FILE (ARF) SECTION INDEX
1 # this is the main function
2 def main()
3 # say hello
4 print(‘Greetings!’)
5
6 # give compliment
7 # about the outfit
8 print(‘Your shoes are nice!’)
9 print(‘Your shirt is nice!’)
10
11 # give comment on the season
12 print(‘It’s a nice summer day!’)
13
14 # say goodbye
15 print(‘Farewell!’)
16 if __name__ == ‘__main___’:
17 # start the main function
18 main()

Figure 4.2: The URF and ARF we use to illustrate the analysis process. The URF file
includes the conflicting chunks to be resolved, and the ARF contains the resolved
conflicting chunks, i.e. the conflicting chunk resolutions.

4.3.1 Creation of the Section List of the URF

First, the URF is divided into sections. All conflicting chunks are located and the code

lines in between the merging marker 1 and merging marker 2 (i.e., the code from the first

branch) are denoted as sections of type CCP1. Analogously, the code lines in between

merging marker 2 and merging marker 3 (i.e., the code from the second branch) are

denoted as sections of type CCP2. All non-conflicting code segments surrounding these

sections (i.e., the contexts) are marked as sections of type CTX. This results in a list of

4 METHODOLOGY 30

sections that represents the structure of the unmerged resolution file. Each section is

indexed with a section index, denoting its place within the file.

4.3.1.1 Empty Contexts and Empty Conflicting Chunk Parts

If the URF starts with a conflicting chunk, meaning that there is no first context, an

empty section of type CTX is inserted at the start of the section list. Analogously, if

the URF ends with a conflicting chunk, meaning that there is no last context, an empty

section of type CTX is inserted at the end of the section list. Contexts in between

conflicting chunks can not be empty, because if they were, their surrounding conflicting

chunks would be aggregated into one conflicting chunk.

Similarly, if any of the code segments found in the conflicting chunks are empty, i.e.,

there are no lines between merging marker 1 and merging marker 2 or between merging

marker 2 and merging marker 3), then an empty section of either type CCP1 or CCP2 is

inserted at the corresponding place in the section list.

This guarantees that the section list has a standardised structure of alternating sec-

tions of type CTX and bundles of sections of type CCP1 and CCP2, starting and ending

with a section of type CTX. This is necessary for the following steps of our algorithm to

work.

4 METHODOLOGY 31

UNMERGED RESOLUTION FILE (URF) SECTION INDEX MAPPED
1 def main() CTX 1
2 # say hello
3 <<<<<<< BRANCH A (HEAD)
4 print(‘Hello!’) CCP1 2
5 =======
6 print(‘Greetings!’) CCP2 3
7 >>>>>>> BRANCH B
8 CTX 4
9 # give compliment
10 <<<<<<< BRANCH A (HEAD)
11 print(‘Your shoes are nice!’) CCP1 5
12 =======
13 print(‘Your shirt is nice!’) CCP2 6
14 >>>>>>> BRANCH B
15 CTX 7
16 # give comment on the weather
17 <<<<<<< BRANCH A (HEAD)
18 print(‘It’s warm outside!’) CCP1 8
19 =======
20 print(‘It’s cold outside!’) CCP2 9
21 >>>>>>> BRANCH B
22 CTX 10
23 # say goodbye
24 <<<<<<< BRANCH A (HEAD)
25 print(‘See you!’) CCP1 11
26 =======
27 print(‘Goodbye!’) CCP2 12
28 >>>>>>> BRANCH B
29 if __name__ == ‘__main___’: CTX 13
30 main()

ACTUAL RESOLUTION FILE (ARF) SECTION INDEX
1 # this is the main function
2 def main()
3 # say hello
4 print(‘Greetings!’)
5
6 # give compliment
7 # about the outfit
8 print(‘Your shoes are nice!’)
9 print(‘Your shirt is nice!’)
10
11 # give comment on the season
12 print(‘It’s a nice summer day!’)
13
14 # say goodbye
15 print(‘Farewell!’)
16 if __name__ == ‘__main___’:
17 # start the main function
18 main()

Figure 4.3: Sections of the URF. As can be seen in the SECTION column, every conflicting
chunk (sections CCP1 and CCP2) is enclosed by contexts (sections CTX). Their section
indices are shown in the INDEX column.

4.3.2 Section and Line Mapping

Next, a section and line mapping between the URF and ARF is performed. To this end,

the ARF is traversed, and where possible, the sections of the URF are mapped to lines of

the ARF. The mapping is based on Java’s in-built String comparison, and the algorithm

proceeds as detailed in Algorithm 4.1. This results in information about which (if any)

of URF’s sections were found in ARF, and which (if any) of ARF’s lines could therefore

be mapped.

4 METHODOLOGY 32

1 ARF.sections = []
2 for section in URF.sections:
3 if section is empty:
4 mark section as mapped
5 else:
6 if section.lines exist within ARF:
7 mark section as mapped
8 add section to ARF.sections
9 mark the corresponding lines in the ARF as belonging to section

Algorithm 4.1: Section and line mapping between URF and ARF

UNMERGED RESOLUTION FILE (URF) SECTION INDEX MAPPED
1 def main() CTX 1 TRUE
2 # say hello
3 <<<<<<< BRANCH A (HEAD)
4 print(‘Hello!’) CCP1 2
5 =======
6 print(‘Greetings!’) CCP2 3 TRUE
7 >>>>>>> BRANCH B
8 CTX 4 TRUE
9 # give compliment
10 <<<<<<< BRANCH A (HEAD)
11 print(‘Your shoes are nice!’) CCP1 5 TRUE
12 =======
13 print(‘Your shirt is nice!’) CCP2 6 TRUE
14 >>>>>>> BRANCH B
15 CTX 7
16 # give comment on the weather
17 <<<<<<< BRANCH A (HEAD)
18 print(‘It’s warm outside!’) CCP1 8
19 =======
20 print(‘It’s cold outside!’) CCP2 9
21 >>>>>>> BRANCH B
22 CTX 10 TRUE
23 # say goodbye
24 <<<<<<< BRANCH A (HEAD)
25 print(‘See you!’) CCP1 11
26 =======
27 print(‘Goodbye!’) CCP2 12
28 >>>>>>> BRANCH B
29 if __name__ == ‘__main___’: CTX 13
30 main()

ACTUAL RESOLUTION FILE (ARF) SECTION INDEX
1 # this is the main function
2 def main() CTX 1
3 # say hello
4 print(‘Greetings!’) CCP2 3
5 CTX 4
6 # give compliment
7 # about the outfit
8 print(‘Your shoes are nice!’) CCP1 5
9 print(‘Your shirt is nice!’) CCP2 6
10
11 # give comment on the season
12 print(‘It’s a nice summer day!’)
13 CTX 10
14 # say goodbye
15 print(‘Farewell!’)
16 if __name__ == ‘__main___’:
17 # start the main function
18 main()

Figure 4.4: Result of the section and line mapping between the URF and the ARF. As
shown in the SECTION and INDEX column of the ARF, six sections were found in
total, namely Section(CTX, 1), Section(CCP2, 3), Section(CTX, 4), Section(CPP1, 5),
Section(CPP2, 6) and Section(CTX, 10). They are shown at their respective place
line-wise within that column. Their mapping status shown in the MAPPED column
of the URF reflects their successful mapping.

4 METHODOLOGY 33

4.3.2.1 Special Case: Empty ARF

If the ARF is empty, meaning that it contains no lines, then the section and line mapping

and all further analysis steps are skipped. Rather, all empty sections of the URF are

marked as mapped, whereas the non-empty ones are marked as unmapped. The results

are then aggregated according to the procedure detailed in Section 4.3.5.

4.3.2.2 Checking the Section List Structure

After the section and line mapping is finished, we determine if the mapped sections were

mapped in order by checking if the section indices of the sections in the ARF increase

with each consecutive section. If this is not the case, then contexts or conflicting chunks

were moved from their original position within the code to another position. Since we

cannot say what implications this restructuring has for the conflicting chunk resolutions

and contexts, as we do not perform any syntactical or semantic analysis on the code,

we terminate the analysis and mark the conflicting file as skipped, stating the changed

section list structure as the reason for the skip (see Section 4.4).

If however the sections are mapped in order, then we check if there are unmapped lines

in the ARF. If no unmapped lines remain in the ARF, then the conflicting file resolution

is derivable, as all contexts were mapped (and therefore remained unchanged) and all

conflicting chunks were resolved canonically or semi-canonically (as either CPP1, CPP2,

both or neither were mapped). In this case, our analysis is complete and we gather the

results according to the procedure detailed in Section 4.3.5.

In our example, lines 1, 7, 11-12 and 15-18 remain unmapped (see Fig. 4.4). Whenever

such unmapped lines remain, we continue with the analysis as detailed in the next

Section.

4 METHODOLOGY 34

4.3.3 Handling Unmapped Lines

In the case of unmapped lines within the ARF, either contexts were changed and/or

conflicting chunks were resolved non-canonically. To determine what exactly occurs, all

consecutive unmapped lines are gathered into sections with type NONE and section index

-1. They are inserted within the section list of the ARF at the place that they appear in

the code.

UNMERGED RESOLUTION FILE (URF) SECTION INDEX MAPPED
1 def main() CTX 1 TRUE
2 # say hello
3 <<<<<<< BRANCH A (HEAD)
4 print(‘Hello!’) CCP1 2
5 =======
6 print(‘Greetings!’) CCP2 3 TRUE
7 >>>>>>> BRANCH B
8 CTX 4 TRUE
9 # give compliment
10 <<<<<<< BRANCH A (HEAD)
11 print(‘Your shoes are nice!’) CCP1 5 TRUE
12 =======
13 print(‘Your shirt is nice!’) CCP2 6 TRUE
14 >>>>>>> BRANCH B
15 CTX 7
16 # give comment on the weather
17 <<<<<<< BRANCH A (HEAD)
18 print(‘It’s warm outside!’) CCP1 8
19 =======
20 print(‘It’s cold outside!’) CCP2 9
21 >>>>>>> BRANCH B
22 CTX 10 TRUE
23 # say goodbye
24 <<<<<<< BRANCH A (HEAD)
25 print(‘See you!’) CCP1 11
26 =======
27 print(‘Goodbye!’) CCP2 12
28 >>>>>>> BRANCH B
29 if __name__ == ‘__main___’: CTX 13
30 main()

ACTUAL RESOLUTION FILE (ARF) SECTION INDEX
1 # this is the main function NONE -1
2 def main() CTX 1
3 # say hello
4 print(‘Greetings!’) CCP2 3
5 CTX 4
6 # give compliment
7 # about the outfit NONE -1
8 print(‘Your shoes are nice!’) CCP1 5
9 print(‘Your shirt is nice!’) CCP2 6
10 NONE -1
11 # give comment on the season
12 print(‘It’s a nice summer day!’)
13 CTX 10
14 # say goodbye
15 print(‘Farewell!’) NONE -1
16 if __name__ == ‘__main___’:
17 # start the main function
18 main()

Figure 4.5: Result of the aggregation of unmapped lines within the ARF. As can be seen
in the SECTION and INDEX columns of the ARF, the unmapped lines (line 1, 7, 11-12
and 15-18) were gathered into multiple Section(NONE, -1).

Next, we determine what implications the placing of these sections of unmapped lines

have for the conflicting chunk resolutions and contexts. To this end, we analyse each

of these sections of unmapped lines and their (eventual) surrounding mapped sections.

There are four possible scenarios where such sections of unmapped lines may lie in the

code, and we lay them all out in the following Sections. To simplify our explanations, we

4 METHODOLOGY 35

will refer to the section list of the ARF as ARF.sections, and we will refer to the section

list of the URF as URF.sections. Additionally, we will use the following notation:

• ARF.sections.length refers to the length of the ARF.sections list. In our example,

ARF.sections.length is 10. Analogously, URF.sections.length refers to the length of

the URF.sections list. In our example, URF.sections.length is 13.

• ARF.sections[i] refers to the section found in the ARF.sections list at index i. The

index i is one-based, and we refer to it as the section list index. In our example,

ARF.sections[3] is the section Section(CCP2, 3).

• ARF.sections[i].index refers to the section index of the section found in the ARF.sections

list at index i. In our example, ARF.sections[3].index is 3.

4.3.3.1 Unmapped Lines at the Beginning of the File

ARF.sections[1].index = -1: If there are unmapped lines at the very beginning of the file,

then the following two scenarios are possible:

1. ARF.sections[2].index = 1: In this case, the next section that could be mapped

afterwards is the Section(CTX, 1), i.e., the first context. Therefore, additional

lines were added beforehand, and since this marks a change to this first context,

we mark it as unmapped.

2. ARF.sections[2].index = k, 1 < k ≤ URF.sections.length: In this case, no sections

up until the one with section index k could be mapped. We therefore mark all of

the sections with section index < k as unmapped.

In our example, additional lines are added before Section(CTX, 1) (see Figure 4.5).

Therefore, according to the first case scenario above, we mark the it as unmapped (see

Figure 4.6).

4 METHODOLOGY 36

4.3.3.2 Unmapped Lines at the End of the File

ARF.sections[ARF.sections.length - 1].index = -1: Another possibility is that there are

unmapped lines at the end of the file. Again, there are two possible scenarios:

1. ARF.sections[ARF.sections.size - 2].index = URF.sections.length - 1: In this case, the

last sections that could be mapped before is Section(CTX, URL.sections.length - 1),

i.e., the last context. Therefore, additional lines were added afterwards, and since

this marks a change to this last context, we mark it as unmapped.

2. ARF.sections[ARF.sections.size - 2].index = k, 1 ≤ k < URF.sections.length: In this

case, no sections down until the one with section index k could be mapped. We

therefore mark all of the sections with section index > k as unmapped.

In our example, Section(CTX, 10) is the last mapped section before the one with

unmapped lines (Section(NONE, -1)) (see Figure 4.5). Therefore, according to the sec-

ond scenario above, we mark all sections with section index > 10, namely the sections

Section(CCP1, 11), Section(CCP2, 12) and Section(CTX, 13) as unmapped (see Figure

4.6).

4.3.3.3 Unmapped Lines in between Neighbouring Sections

If there are unmapped lines in between neighbouring sections (i.e., sections whose section

indices are consecutive numbers), then additional lines were inserted in between two

mapped sections. There are two possible scenarios:

1. One of the two mapped sections is of type CTX, whereas the other is either of

type CCP1 or CCP2. In this case, by convention, we mark the section that CTX

corresponds to as unmapped.

2. The two sections are of type CCP1 and CCP2. In this case, we mark them both as

unmapped.

4 METHODOLOGY 37

In our example, there is an unmapped line (line 7) in between the neighbouring sections

Section(CTX, 4) and Section(CCP1, 5) (see Figure 4.5). As Section(CTX, 4) denotes a

context, according to the first case above, we mark it as unmapped.

4.3.3.4 Unmapped Lines in between Non-Neighbouring Sections

If there are unmapped lines in between non-neighbouring sections (i.e., sections whose

sections indices are not consecutive numbers), then all sections in between these non-

neighbouring sections could not be mapped, indicating non-canonical conflicting chunk

resolutions and/or changed contexts. In this case, we mark all sections with section

indices in between the sections indices of these non-neighbouring sections as unmapped.

In our example, there are unmapped lines (lines 10-12) in between the non-neighbouring

sections Section(CPP2, 6) and Section(CTX, 10) (see Figure 4.5). We therefore mark all

sections in between these two (namely sections Section(CTX, 7), Section(CCP1, 8) and

Section(CCP2, 9)) as unmapped (see Figure 4.6).

4.3.4 Handling Unmarked Sections

After all unmapped lines are analysed according to the four scenarios above, sections

within the URF that do not have a mark already are marked as unmapped. This step

finalises the mapping.

In our example, only Section(CCP1, 2), the second section in URF.sections, is left

without a mapping (see Figure 4.5). It is subsequently marked unmapped (see Figure

4.6).

4 METHODOLOGY 38

UNMERGED RESOLUTION FILE (URF) SECTION INDEX MAPPED
1 def main() CTX 1 FALSE
2 # say hello
3 <<<<<<< BRANCH A (HEAD)
4 print(‘Hello!’) CCP1 2 FALSE
5 =======
6 print(‘Greetings!’) CCP2 3 TRUE
7 >>>>>>> BRANCH B
8 CTX 4 FALSE
9 # give compliment
10 <<<<<<< BRANCH A (HEAD)
11 print(‘Your shoes are nice!’) CCP1 5 TRUE
12 =======
13 print(‘Your shirt is nice!’) CCP2 6 TRUE
14 >>>>>>> BRANCH B
15 CTX 7 FALSE
16 # give comment on the weather
17 <<<<<<< BRANCH A (HEAD)
18 print(‘It’s warm outside!’) CCP1 8 FALSE
19 =======
20 print(‘It’s cold outside!’) CCP2 9 FALSE
21 >>>>>>> BRANCH B
22 CTX 10 TRUE
23 # say goodbye
24 <<<<<<< BRANCH A (HEAD)
25 print(‘See you!’) CCP1 11 FALSE
26 =======
27 print(‘Goodbye!’) CCP2 12 FALSE
28 >>>>>>> BRANCH B
29 if __name__ == ‘__main___’: CTX 13 FALSE
30 main()

ACTUAL RESOLUTION FILE (ARF) SECTION INDEX
1 # this is the main function NONE -1
2 def main() CTX 1
3 # say hello
4 print(‘Greetings!’) CCP2 3
5 CTX 4
6 # give compliment
7 # about the outfit NONE -1
8 print(‘Your shoes are nice!’) CCP1 5
9 print(‘Your shirt is nice!’) CCP2 6
10 NONE -1
11 # give comment on the season
12 print(‘It’s a nice summer day!’)
13 CTX 10
14 # say goodbye
15 print(‘Farewell!’) NONE -1
16 if __name__ == ‘__main___’:
17 # start the main function
18 main()

Figure 4.6: Final result of the mapping. As can bee seen when compared with Fig-
ure 4.5, Section(CTX, 1) is now marked as unmapped (according to Section 4.3.3.1).
Further, Section(CCP1, 11), Section(CCP2, 12) and Section(CTX, 13) are now marked
as unmapped (according to Section 4.3.3.2). Contrary to the intermediate result in
Figure 4.5, Section(CTX, 4) is now also marked as unmapped (according to Section
4.3.3.3). Finally, Section(CTX, 7), Section(CCP1, 8) and Section(CCP2, 9) are marked
unmapped (according to Section 4.3.3.4). And lastly, Section(CCP1, 2) is also marked
as unmapped (according to 4.3.4).

4.3.5 Result

After the analysis is complete, all sections within the URF are marked either mapped or

unmapped, and information about unmapped lines are found in the section list of the

ARF. The final results are then gathered using the following logic:

For every conflicting chunk, if either its associated CCP1 section or its associated CCP2

section is mapped, then the resolution is canonical. If both sections are mapped, or neither

of them, with no unmapped lines in between the enclosing contexts (which would indicate

a non-canonical resolution), then the conflicting chunk resolution is semi-canonical. For

4 METHODOLOGY 39

every context, if its associated CTX section is mapped, then it has remained unchanged.

If it is unmapped however, it has changed.

UNMERGED RESOLUTION FILE (URF) SECTION INDEX MAPPED RESULT
1 def main() CTX 1 FALSE CONTEXT
2 # say hello (CHANGED)
3 <<<<<<< BRANCH A (HEAD) CONFLICTING CHUNK
4 print(‘Hello!’) CCP1 2 FALSE RESOLUTION
5 =======
6 print(‘Greetings!’) CCP2 3 TRUE (CANONICAL)
7 >>>>>>> BRANCH B
8 CTX 4 FALSE CONTEXT
9 # give compliment (CHANGED)
10 <<<<<<< BRANCH A (HEAD) CONFLICTING CHUNK
11 print(‘Your shoes are nice!’) CCP1 5 TRUE RESOLUTION
12 =======
13 print(‘Your shirt is nice!’) CCP2 6 TRUE (SEMI-CANONICAL)
14 >>>>>>> BRANCH B
15 CTX 7 FALSE CONTEXT
16 # give comment on the weather (CHANGED)
17 <<<<<<< BRANCH A (HEAD) CONFLICTING CHUNK
18 print(‘It’s warm outside!’) CCP1 8 FALSE RESOLUTION
19 =======
20 print(‘It’s cold outside!’) CCP2 9 FALSE (NON-CANONICAL)
21 >>>>>>> BRANCH B
22 CTX 10 TRUE CONTEXT
23 # say goodbye (UNCHANGED)
24 <<<<<<< BRANCH A (HEAD) CONFLICTING CHUNK
25 print(‘See you!’) CCP1 11 FALSE RESOLUTION
26 =======
27 print(‘Goodbye!’) CCP2 12 FALSE (NON-CANONICAL)
28 >>>>>>> BRANCH B
29 if __name__ == ‘__main___’: CTX 13 FALSE CONTEXT
30 main() (CHANGED)

Figure 4.7: Result aggregation of the file comparison between URF and ARF.

This results in information about how many canonical, semi-canonical and non-canonical

conflicting chunk resolutions are contained in the conflicting file resolution, along with

the number of unchanged and changed contexts. This in turn makes it possible to deter-

mine whether the conflicting file resolution is derivable - namely, if there are no changed

contexts and only canonical and semi-canonical conflicting chunk resolutions.

4.4 Output

The results of the file comparison detailed in Section 4.3.5 (the number of canonical,

semi-canonical and non-canonical chunk resolutions and the number of changed and un-

changed contexts) are inserted into a schema within a local database. Every conflicting

file represents one entry. In addition to these numbers, the file name is stored as meta-

4 METHODOLOGY 40

data, along with the state of the analysis (whether the file comparison was successful,

and if not, why it failed or why it was skipped).

To link the conflicting files back to the conflicting merges they belong to, these con-

flicting merges are also put into the database within their own schema. Their entries

include metadata like the commit hash value, the total number of files included in the

merge, and the state of the analysis as well as the reason for failure, should our algorithm

not be able to recreate the conflicting merge from the project’s commit history. This

can happen if commits were deleted or the project’s commit history is corrupted.

Analogously, the projects are stored in the database, including metadata like the

project name, the amount of contributors and tags, as well as the amount of total

commits, merges and octopus merges (i.e., merges with more than two parents). The

state of the analysis for the project is also stored, denoting whether its analysis was

successful or whether our algorithm failed to access the project’s resources. Such failures

can happen if the project’s commit history is corrupted, and if this occurs, the exact

reason for failure is stored in the database as well.

This results in a database structure as follows:

4 METHODOLOGY 41

ProjectReport
id int AI PK
state varchar(10)
reason varchar(256)
projectList varchar(256)
projectName varchar(256)
commitCount int
mergeCount int
octopusMergeCount int
tagCount int
contributorCount int

ConflictingMergeReport
id int AI PK
state varchar(10)
reason varchar(256)
commitID varchar(50)
fileCount int
projectReportID int FK

ConflictingFileReport
id int AI PK
state varchar(10)
reason varchar(256)
filename varchar(1024)
countChunkCanonical int
countChunkSemiCanonical int
countChunkNonCanonical int
countContextChanged int
countContextUnchanged int
conflictingMergeReportID int FK

Figure 4.8: Database schema used to gather our results. For each database, the first
column denotes the names of the rows found within the database, the second column
denotes the types associated with said names, and the third column indicates whether
the rows are auto-incrementing (AI), and whether they constitute a primary key (PK)
or a foreign key (FK).

42

5 Results

This Chapter details the results of our analysis. We will explain them and discuss their

findings briefly here. A more extended discussion will follow in Chapter 7. GitAnalzerPlus-

DataAnalysis, the Python application we developed to gather our results from the

databases (see Section 4.4), is accessible for faculty members on the GitLab server of

the University of Bern.13

Note that within all Tables, columns marked with csubscript denote absolute numbers,

whereas columns marked with rsubscript denote relative percentages.

5.1 Overview of the Dimensions of our Study Sets

The following Tables show how many projects, conflicting merges, conflicting files, con-

flicting chunks and contexts we analysed in total. They give an overview of the dimension

of our analysis.

13https://gitlab.inf.unibe.ch/SEG/theses/git-analyzer-plus
For non-faculty members: If you would like to access the code, contact us via email at
yael.vandok@students.unibe.ch.

https://gitlab.inf.unibe.ch/SEG/theses/git-analyzer-plus
mailto:yael.vandok@students.unibe.ch

5 RESULTS 43

5.1.1 Projects

List ctotal rok rskip rfail

C++ 500 76.60 23.40 0.00
GO 498 79.12 20.88 0.00
Java 500 65.00 35.00 0.00
JavaScript 500 53.00 47.00 0.00
Python 499 67.94 32.06 0.00
TypeScript 498 79.32 20.68 0.00

Random (Low Rating) 2434 3.45 96.55 0.00
Random (High Rating) 2437 8.25 91.75 0.00

All Lists 7866 30.33 69.67 0.00

Table 5.1: Overview of the analysed projects. ctotal shows the total amount of scheduled
projects. rok shows the percentage of successfully analysed projects. rskip shows
the percentage of projects for which the analysis was skipped, and rfail shows the
percentage of projects for which the analysis failed.

Table 5.1 gives an overview of the projects we scheduled for analysis. As we detailed in

Section 4.1, we picked about 500 projects for six major programming languages (C++,

GO, Java, JavaScript, Python and TypeScript), and another approximate 2500 projects

with randomly selected names with both low ratings (Random (Low Rating)) and high

ratings (Random (High Rating)) on GitHub. The exact numbers are listed in the ctotal

column. These lists were taken from Buchser’s study, as we mentioned in Section 4.1.

The rfail column indicates projects for which the analysis failed, due to the project

histories being corrupted. This case never occurred.

The rok column shows how many of these projects were analysed successfully, meaning

that we found conflicting merges in their commit histories which we could subsequently

analyse. The rskip column indicates the percentage of skipped projects - namely projects

with no such conflicting merges in their histories.

5 RESULTS 44

What becomes evident immediately is that there were vast differences in between lists

in terms of the skipped projects. While for the specified programming languages, the

rates of projects with conflicting merges range from about 50 % to about 80 %, for the

projects with randomly selected names, the rates are below 10 %, meaning that a vast

majority of those projects were found to not have any conflicting merges.

In the case of projects with low ratings, this number is not surprising, as such projects

are most likely personal projects with only a few (if not just one) developers as well as few

commits and merges. The chance for merge conflicts that come about with collaborative

work is therefore lowered. For projects with high ratings, this low amount of projects

with conflicting merges is less easily explainable, and a detailed analysis of these projects

would be necessary to determine why so few merge conflicts occurred (see Chapter 8).

5.1.2 Conflicting Merges

List ctotal rok rskip rfail

C++ 65566 99.92 0.08 0.00
GO 12176 99.92 0.08 0.00
Java 15189 99.95 0.05 0.00
JavaScript 5936 99.90 0.10 0.00
Python 13959 100.00 0.00 0.00
TypeScript 25936 91.64 8.36 0.00

Random (Low Rating) 304 99.67 0.33 0.00
Random (High Rating) 1639 100.00 0.00 0.00

All Lists 140705 98.40 1.60 0.00

Table 5.2: Overview of the analysed conflicting merges. ctotal shows the total amount
of scheduled conflicting merges. rok shows the percentage of successfully analysed
conflicting merges. rskip shows the percentage of conflicting merges for which the
analysis was skipped, and rfail shows the percentage of conflicting merges for which
the analysis failed.

5 RESULTS 45

Table 5.2 shows how many conflicting merges we scheduled for analysis. The total

amount for each list is found in column ctotal. As can be seen, the projects found in

the C++ list contributed the majority of conflicting merges to our analysis, while the

projects found in the Random (Low Rating) list (i.e., projects with randomly picked names

and low ratings) contributed the least amount by far.

The rok column shows how many of these conflicting merges were analysed successfully,

meaning that they did contain conflicting files, which we analysed further and whose

results can be found in Table 5.3. The rskip column indicates the percentage of skipped

conflicting merges. These conflicting merges did not contain any conflicting files - a

scenario which should not be possible, as a conflicting merge by definition must include

at least one conflicting file.

We suspect that these cases happened due to a bug in JGit’s implementation of the

Recursive Merger which we used to perform the three-way merges.14 The associated class

offers a merge functionality, which performs the three-way merge and returns a boolean,

indicating whether the merge could be issued without conflicts. If the returned value is

false, meaning that conflicts did arise, it is possible to get the paths of the conflicting

files by accessing the mergeResults list property of the merger. This list is supposed to

hold all conflicting file paths, complete with information about which of their lines are

in conflict. However, in the skipped cases, this list was empty, constituting an invalid

scenario, and thereby indicating a bug in JGit.

In terms of percentages, these skipped conflicting merges make up only a tiny minor-

ity. However, there is one outlier. In projects of the TypeScript list, about 8 % of the

conflicting merges were skipped. We do not know how many projects contributed to this

14https://download.eclipse.org/jgit/site/6.3.0.202209071007-r/apidocs/org/eclipse/jgit/
merge/RecursiveMerger.html

https://download.eclipse.org/jgit/site/6.3.0.202209071007-r/apidocs/org/eclipse/jgit/merge/RecursiveMerger.html
https://download.eclipse.org/jgit/site/6.3.0.202209071007-r/apidocs/org/eclipse/jgit/merge/RecursiveMerger.html

5 RESULTS 46

high percentage (whether it was just one of them or many), and this would need further

investigation (see Chapter 8).

We opted to skip these conflicting merges. The remaining ones could be analysed

successfully, as is evident by the rfail rate, which would indicate failures of our analysis

due to issues during recovery of the conflicting merges from the commit histories of the

projects.

5.1.3 Conflicting Files

List ctotal rok rskip rfail

C++ 291990 98.23 1.52 0.25
GO 52794 99.22 0.61 0.17
Java 96921 99.71 0.25 0.04
JavaScript 18076 98.36 1.57 0.07
Python 40768 98.50 1.33 0.17
TypeScript 136907 98.57 1.25 0.18

Random (Low Rating) 509 87.43 12.57 0.00
Random (High Rating) 6238 82.83 17.15 0.02

All Lists 644203 98.47 1.34 0.18

Table 5.3: Overview of the analysed conflicting files. ctotal shows the total amount of
scheduled conflicting files. rok shows the percentage of successfully analysed conflicting
files. rskip shows the percentage of conflicting files for which the analysis was skipped,
and rfail shows the percentage of conflicting files for which the analysis failed.

As shown in Table 5.3, we analysed a total of 644’203 conflicting files contained within

the conflicting merges detailed in the Section 5.1.2. Again, the total numbers for each

list are shown in the ctotal column. Most conflicting files were found within projects from

the C++ list, which also contributed most conflicting merges.

The rok column indicates the percentage of successfully analysed conflicting files. The

analysis we conducted on these files is the one detailed in Sections 4.2 and 4.3, and their

5 RESULTS 47

results can be found in Tables 5.4 and 5.5. A small percentage of conflicting files (shown

in column rskip) were skipped, as they were non-line-based files (image files like .png

and .jpg files, binaries like .dll files, and folders). As we explained in Section 4.3.2.2,

if conflicting chunks or contexts are moved from their original position off to another

position within the file during merging, we cannot meaningfully state anything regarding

the derivability of the conflicting file resolution as a whole. We therefore would also skip

these conflicting files. However, for all conflicting files we analysed, this case never

occurred.

Our analysis failed for another small set of the conflicting files (indicated by column

rfail). This was always due to an internal exception thrown by JGit. In all of these cases,

the exception stated that the file could not be recovered from the project’s history. We

suspect that this was either due to a bug in JGit, or due to incorrectly set up commit

histories or deleted commits. We did not investigate the exact reasons further, and we

opted to exclude these files from the further analysis aggregation as they account only

for a small percentage of all conflicting files. In future work, the exact reasons for failure

could be determined (see Chapter 8).

5 RESULTS 48

5.1.4 Conflicting Chunks

List ctotal rcanonical rsemi-canonical rnon-canonical

C++ 672779 71.46 9.75 18.79
GO 115482 51.29 12.65 36.06
Java 136712 77.96 6.11 15.92
JavaScript 119112 45.24 5.33 49.43
Python 71879 61.80 11.87 26.33
TypeScript 322912 68.17 9.29 22.54

Random (Low Rating) 1145 53.45 21.40 25.15
Random (High Rating) 11210 68.47 12.47 19.06

All Lists 1451231 67.07 9.31 23.62

Table 5.4: Overview of the analysed conflicting chunks. ctotal shows the total amount
of analysed conflicting chunks. rcanonical shows the percentage of canonically resolved
conflicting chunks. rsemi-canonical shows the percentage of semi-canonically resolved
conflicting chunks, and rnon-canonical shows the percentage of non-canonically resolved
conflicting chunks.

The resolution rates for conflicting chunks obtained by our analysis are shown in Table

5.4. Their total amounts are shown in column ctotal, with the other columns showing

the relative percentages of resolution. About two thirds of all conflicting chunks were

resolved canonically, with the highest percentages found for projects within the Java list

(about 78 %), and the lowest percentage found for projects within the JavaScript list

(about 45 %).

5 RESULTS 49

5.1.5 Contexts

List ctotal runchanged rchanged

C++ 959603 80.37 19.63
GO 167865 81.87 18.13
Java 233356 91.32 8.68
JavaScript 136892 71.17 28.83
Python 112034 81.51 18.49
TypeScript 457868 77.68 22.32

Random (Low Rating) 1590 53.65 46.35
Random (High Rating) 16377 77.85 22.15

All Lists 2085585 80.54 19.46

Table 5.5: Overview of the analysed contexts. ctotal shows the total amount of analysed
contexts. runchanged shows the percentage of contexts that were left unchanged, and
rchanged shows the percentage of contexts that were altered.

As was explained in Sections 4.2 and 4.3, our conflicting file analysis did not only de-

termine the conflicting chunk resolutions rates, but also whether changes were made to

contexts. The results of the latter part of the analysis are shown in Table 5.5, with

the ctotal column indicating the total numbers of found contexts, and the runchanged and

rchanged columns indicating the percentage of unchanged and changed contexts respec-

tively.

Developers in general did not change the contexts. A great majority of contexts found

within all lists were left as is, as is indicated by the high percentages in the runchanged

column.

One outlier to this high percentage of unchanged contexts however is the Random (Low

Rating) list (i.e., projects with randomly picked names and low ratings). There, about

half of the contexts were changed. As the total amount of contexts found within this

list is the lowest by far, we do not think that this has significant implications for our

5 RESULTS 50

findings. However, the reason why so many context changes occurred within projects in

this list could be investigated further (see Chapter 8).

5.2 Derivability

This Section details how many of the analysed conflicting files and conflicting merges

were found to be derivable. As we detailed in Section 2.3.1, a conflicting file resolution

is derivable if all its contexts remained unchanged and all its conflicting chunks were re-

solved canonically or semi-canonically. A conflicting merge resolution in turn is derivable

if all the conflicting file resolutions it contains themselves are derivable.

5.2.1 Overview

Tables 5.6 and 5.7 show the absolute numbers of analysed conflicting file and conflicting

merge resolutions and their respective derivability rates.

5 RESULTS 51

5.2.1.1 Conflicting Files

List ctotal rderivable rnon-derivable

C++ 286824 62.18 37.82
GO 52383 69.95 30.05
Java 96644 77.92 22.08
JavaScript 17780 60.42 39.58
Python 40155 57.49 42.51
TypeScript 134956 69.48 30.52

Random (Low Rating) 445 37.98 62.02
Random (High Rating) 5167 70.23 29.77

All Lists 634354 66.47 33.53

Table 5.6: Derivability rates of conflicting files. ctotal shows the total amount of analysed
conflicting files. rderivable shows the percentage of conflicting files that were resolved
in a derivable manner, and rnon-derivable shows the percentage of conflicting files that
were resolved in a non-derivable manner.

The total amount of analysed conflicting files are shown in the ctotal column. About

two thirds of all these conflicting files received a derivable resolution, and one third

subsequently received a non-derivable resolution, as is indicated by the rderivable and

rnon-derivable columns. The derivability rates are fairly consistent for the lists of program-

ming languages, ranging from about 57 % to 70 %, with the only slight outlier being

the Java list with about 78 %. This is to be expected, as this list showed very high

rates for unchanged contexts (see Table 5.5) and canonical and semi-canonical conflict-

ing chunk resolutions (see Table 5.4), which are the necessary conditions for a conflicting

file resolution to be derivable.

The projects found within Random (High Rating), i.e., projects with randomly picked

names and high ratings, have a similar rate. The only outlier are the conflicting files

found within projects of the Random (Low Rating) list, as only about 38 % of these

5 RESULTS 52

conflicting files were resolved in a derivable manner. Overall, the impact of this list on

our findings is small, as it only features few projects which contributed only a small

number of conflicting files and conflicting merges.

5.2.1.2 Conflicting Merges

List ctotal rderivable rnon-derivable

C++ 65511 34.57 65.43
GO 12166 34.36 65.64
Java 15181 46.85 53.15
JavaScript 5930 35.36 64.64
Python 13959 32.07 67.93
TypeScript 23767 30.66 69.34

Random (Low Rating) 303 28.05 71.95
Random (High Rating) 1639 34.17 65.83

All Lists 138456 34.99 65.01

Table 5.7: Derivability rates of conflicting mserges. ctotal shows the total amount of anal-
ysed conflicting merges. rderivable shows the percentage of conflicting merges that were
resolved in a derivable manner, and rnon-derivable shows the percentage of conflicting
merges that were resolved in a non-derivable manner.

Of all the conflicting merges we analysed (shown in column ctotal), about one third were

resolved in a derivable way. As was the case for the conflicting files, the derivability

rates (shown in columns rderivable and rnon-derivable) were fairly consistent within the lists

of programming languages (with percentages ranging from about 30 % to 35 %). Only

the Java list had a higher percentage of about 45 %, which is in line with this list having

the highest rate of derivable conflicting file resolutions.

The Random (Low Rating) list shows the lowest derivability rate (about 28 %). As we

stated before, since this list contains very few conflicting merges, their impact on our

findings is small.

5 RESULTS 53

5.2.2 Categorised Derivability Rates

To gather further insight into the properties of derivable and non-derivable resolutions,

we categorise them by their amount of conflicting chunks (in the case of conflicting files)

and by both their amount of conflicting chunks and their amount of conflicting files (in

the case of conflicting merges).

As we explained in Section 2.3.3, how many conflicting chunks are included within

the conflicting merges and how they are distributed over the conflicting files are impor-

tant aspects to consider when investigating the feasibility of a merge conflict resolution

generator, as they determine the cost and complexity of the generation. Furthermore,

whether the conflicting chunks within a conflicting merge are dependent on each other

determines whether certain strategies could be applied to reduce the resolution set of

the generation (see Section 2.3.3.1).

As we did not perform any syntactical or semantic analysis of the merge conflicts

and their resolutions, we cannot say how often dependencies between conflicting chunks

occurred, and of what nature these dependencies were. Subsequently, we do not know in

how many cases strategies to lower the computational cost by reducing the resolution set

of the generation could be applied. Therefore, in the following Sections, we will assume

the worst case scenario - namely, that all conflicting chunks within all conflicting merges

depend on each other, and that the reduction of the resolution set is not possible. This

means that for every conflicting merge, we assume that the whole set of all derivable

conflicting merge resolutions must be generated.

If we find that the conflicting merges and conflicting files have favourable character-

istics like low conflicting chunk counts, then this means that even in such a worst case

scenario, the generation of the merge conflict resolutions would be feasible at a low

computational cost.

5 RESULTS 54

5.2.2.1 Conflicting Files

cCC ccount rcount rderivable rnon-derivable

1 515563 81.27 73.91 26.09
2 61424 9.68 38.79 61.21
3 21267 3.35 36.78 63.22
4 10247 1.62 30.76 69.24
5 5845 0.92 28.47 71.53
6 3825 0.60 23.53 76.47
7 2793 0.44 29.47 70.53
8 1793 0.28 20.97 79.03
9 1384 0.22 23.48 76.52
10 1024 0.16 16.70 83.30
11 831 0.13 16.85 83.15
12 611 0.10 20.95 79.05
13-6087 7747 1.22 16.47 83.53

Table 5.8: Derivability of conflicting files, categorised by their conflicting chunk count.
cCC denotes the conflicting chunk count of each category. ccount shows the amount of
conflicting files within each category. rcount shows how much each category makes up
percentage-wise out of all conflicting files. rderivable shows the percentage of conflicting
files that were resolved in a derivable way within each category, and rnon-derivable shows
the percentage of conflicting files that were resolved in a non-derivable way within each
category.

In Table 5.8, the cCC column denotes the amount of conflicting chunks which we used

to categorise the conflicting files by. The ccount column displays the total amount of

conflicting files found within for each conflicting chunk count, and the rcount column

shows how much these amounts make up percentage-wise out of all analysed conflicting

files. The rderivable and rnon-derivable columns display the percentages of derivable and

non-derivable conflicting file resolutions respectively.

The vast majority of all conflicting files we analysed (namely about 81 %) did only

contain one conflicting chunk, and about 74 % of these files were resolved in a derivable

5 RESULTS 55

way. There is a sharp decline in the amount of conflicting files found for higher conflicting

chunk counts, and conflicting files with more than four conflicting chunks make up no

more than one 1 % each. This holds true for all the remaining conflicting chunk counts,

and for the sake of readability, we aggregated the conflicting files with more than 12

conflicting chunks together in one single row. As is shown in rcount, these conflicting files

make up only 1.22 % of the overall amount.

With the higher conflicting chunk counts comes a lower derivability rate of the con-

flicting file resolutions, and by the fifth row, i.e., conflicting files with five conflicting

chunks, more than 70 % of the included conflicting files were resolved in a non-derivable

manner.

5 RESULTS 56

5.2.2.2 Conflicting Merges

cCF ccount rcount rderivable rnon-derivable

1 61696 44.56 41.66 58.34
2 25043 18.09 34.12 65.88
3 12292 8.88 28.93 71.07
4 7869 5.68 28.54 71.46
5 5317 3.84 26.29 73.71
6 3956 2.86 25.88 74.12
7 3001 2.17 24.96 75.04
8 2344 1.69 24.70 75.30
9 1788 1.29 24.27 75.73
10 1478 1.07 24.56 75.44
11 1304 0.94 25.15 74.85
12 1043 0.75 25.22 74.78
13 881 0.64 24.29 75.71
14 802 0.58 26.06 73.94
15 575 0.42 24.17 75.83
16 566 0.41 21.20 78.80
17 520 0.38 28.85 71.15
18 534 0.39 22.28 77.72
19 412 0.30 25.00 75.00
20 416 0.30 25.24 74.76
21-27615 6833 4.94 23.30 76.70

Table 5.9: Derivability rates of conflicting merges, categorised by their conflicting file
count. cCF denotes the conflicting file count of each category. ccount shows the amount
of conflicting merges within each category. rcount shows how much each category
makes up percentage-wise out of all conflicting merges. rderivable shows the percentage
of conflicting merges that were resolved in a derivable way within each category, and
rnon-derivable shows the percentage of conflicting merges that were resolved in a non-
derivable way within each category.

5 RESULTS 57

Table 5.9 shows the analysed conflicting merges categorised by their conflicting file count.

Analogously to Table 5.8, the cCF column denotes the conflicting file count used to cate-

gorise the conflicting merges, whereas the ccount column denotes the amount of conflicting

merges found for each conflicting file count. The rcount column shows how much these

conflicting merges makes up percentage-wise out of all analysed conflicting merges, and

the rderivable and rnon-derivable columns show how many of them were resolved in a deriv-

able or non-derivable way respectively.

As can be seen, the amount of occurrences becomes smaller with increasing conflicting

file counts. Whereas 45 % of all conflicting merges were found to have one conflicting

file, less than 20 % were found to have two, and less than 10 % were found to have

three. By the fifth row, i.e. conflicting merges with five conflicting files, the amount

of conflicting merges makes up less than 5 % of all conflicting merges. This downwards

trend continues, and conflicting merges with more than 20 conflicting files make up less

than 1 % each. This holds true for all remaining conflicting file counts, and we therefore

represent all of these conflicting merges with more than 20 conflicting files in a single

row in the Table. In total, they make up less than 5 % of all conflicting merges.

With the increasing number of conflicting files comes a decreasing derivability rate.

Whereas conflicting merges with one conflicting file have a derivability rate of about

40 %, it lowers down to 35 % for conflicting merges with two conflicting files, and by the

fifth row, i.e. conflicting merges with five conflicting files, it stabilises at about 25 %,

meaning that about a quarter of conflicting merges with more than five conflicting files

were found to be derivable.

5 RESULTS 58

cCC cCM, rCM rCM, d. rCM, non-d. cCF rCF rCF, d. rCF, non-d.

1 62981 45.49 48.75 51.25 62981 9.93 48.92 51.08
2 24433 17.65 33.59 66.41 39616 6.25 47.31 52.69
3 11918 8.61 24.80 75.20 26200 4.13 48.20 51.80
4 7568 5.47 23.71 76.29 20296 3.20 49.51 50.49
5 4990 3.60 19.74 80.26 16170 2.55 50.19 49.81
6 3519 2.54 16.11 83.89 12959 2.04 48.15 51.85
7 2636 1.90 15.17 84.83 11115 1.75 50.27 49.73
8 2105 1.52 15.01 84.99 9907 1.56 52.63 47.37
9 1739 1.26 16.79 83.21 8981 1.42 53.16 46.84
10 1360 0.98 13.46 86.54 7692 1.21 51.74 48.26
11 1131 0.82 12.11 87.89 6713 1.06 51.08 48.92
12 986 0.71 15.92 84.08 6302 0.99 54.27 45.73
13 786 0.57 11.45 88.55 5539 0.87 54.13 45.87
14 720 0.52 13.06 86.94 5600 0.88 56.70 43.30
15 596 0.43 12.75 87.25 4695 0.74 53.25 46.75
16 562 0.41 12.63 87.37 4757 0.75 53.44 46.56
17 409 0.30 13.20 86.80 3571 0.56 57.18 42.82
18 493 0.36 12.37 87.63 4663 0.74 59.17 40.83
19 414 0.30 14.25 85.75 4237 0.67 60.87 39.13
20 361 0.26 15.51 84.49 3811 0.60 60.14 39.86

21-27615 7819 5.65 15.17 84.83 368549 58.10 78.09 21.91

Table 5.10: Derivability rates of conflicting merges, categorised by their conflicting chunk
count. cCC denotes the conflicting chunk count of each category. cCM shows the
amount of conflicting merges within each category. rCM shows how much each category
makes up percentage-wise out of all conflicting merges. rCM, d. shows the percentage
of conflicting merges that were resolved in a derivable way within each category, and
rCM, non-d. shows the percentage of conflicting merges that were resolved in a non-
derivable way within each category. Further, the amount of conflicting files found
within the conflicting merges of each category are listed in cCF. rCF shows how
much each category makes up percentage-wise out of all conflicting files. rCF, d. shows
the percentage of conflicting files that were resolved in a derivable way within each
category, and respectively, rCF, non-d. shows the percentage of conflicting files that were
resolved in a non-derivable way.

5 RESULTS 59

Table 5.10 shows the analysed conflicting merges categorised by their conflicting chunk

count. cCC indicates the conflicting chunk count, and cCM indicates how many conflicting

merges were found for each of these counts. rCM shows how much each category makes

up percentage-wise out of all conflicting merges, and rCM, d. and rCM, non-d. show how

many of the conflicting merges were resolved in a derivable and non-derivable manner

respectively. To gather further insight, the conflicting files found within the conflicting

merges and their derivability rates are shown in the remaining columns. cCF shows

the amount of conflicting files found within each category, and rCF shows how much

this amount makes up percentage-wise out of all conflicting files. Analogously to the

conflicting merges, rCF, d. and rCF, non-d. show the percentages of derivable and non-

derivable conflicting file resolutions.

About 45 % of all conflicting merges contained only one conflicting chunk within one

conflicting file, and in about 49 %, the conflicting merge was resolved in a derivable man-

ner. Conflicting merges with two conflicting chunks make up the second biggest category

(with about 18 % of all conflicting merges), and the derivability rate for this category

lies at about 34 %). Only about 8 % of all conflicting merges contained three conflicting

chunks, and about 25 % of these conflicting merges were resolved in a derivable manner.

The number of conflicting merges lowers as the conflicting chunk count, increases and by

the tenth row, i.e., conflicting merges with ten conflicting chunks, said amounts makes

up less than 1 % for each category. Conflicting merges with conflicting chunk counts

from one to five make up about 80 % of all conflicting merges.

Interestingly, even though the conflicting merges with up to 20 conflicting chunks

make up about 95 % of all analysed conflicting merges, the conflicting files found these

conflicting merges only constitute about 40 % of all analysed conflicting files. This

indicates that the conflicting chunks found within conflicting merges with a high amount

of conflicting chunks are distributed over a large amount of conflicting files. This is in-line

5 RESULTS 60

with the finding in Section 5.2.2.1 that a vast majority of conflicting files only contains

one conflicting chunk.

An interesting trend is the increase of the derivability rate for conflicting files as

the conflicting chunk count rises. Whereas for conflicting merges with one conflicting

chunk, about 49 % of the conflicting files found within were resolved in a derivable

way, for conflicting merges with 20 conflicting chunks, about 60 % of all conflicting

files found within were resolved in a derivable way. For conflicting merges with more

than 20 conflicting chunks, the average derivability rate of conflicting files lies at about

78 %. Curiously, even though this derivability rate of the conflicting files increases,

the derivability rate of the conflicting merges themselves decreases. This indicates that

conflicting merges with a high amount of conflicting chunks contain a high amount of

derivable conflicting file resolutions, and their low derivability rate as a whole is due to

a low amount of non-derivable conflicting file resolutions.

5.3 Comparison with Buchser’s Results

As we mentioned, our study is a direct continuation of the study conducted by Buchser.

However, he limited his analysis to conflicting merges with at most 12 conflicting chunks.

To compare our results with his, we categorised our results according to this limitation,

and we display these results in Table 5.11 and Figures 5.1 and 5.2.

As we explained in Section 3.2, our approach differs from his in multiple aspects. First,

we also analysed the contexts found within conflicting files and determined whether

they were changed. Second, we also considered semi-canonical resolutions of conflicting

chunks. Third, we eliminated the possibility of falsely mapped conflicting chunks by

restricting their mapping to the place within the file were they should appear. (However,

as we stated in Section 5.1.3, such a case never occurred.)

We further introduced the concept of derivability, which is more strict than the concept

of canonical file and merge resolutions Buchser used in his work. In his study, conflicting

5 RESULTS 61

merge resolutions and conflicting file resolutions are called canonical if all conflicting

chunks found within were resolved canonically respectively. In our study, a conflicting

file is derivable if all its conflicting chunks were resolved in a canonical or semi-canonical

way and no contexts were changed. Subsequently, a conflicting merge is derivable if all

its conflicting files were resolved in a derivable manner.

Because of these differences, we expect our derivability rates to be lower than the rates

of canonical conflicting file and merge resolutions that Buchser found in his study. [2,

p. 23]

5 RESULTS 62

5.3.1 Categorised Resolution Rates

cCC cO., CM cB., CM rO., CM, d. rB., CM, c. cO., CF cB., CF rO., CF, d. rB., CF, c.

1 62981 60515 48.75 40.55 184215 175243 55.21 50.31
2 24433 23319 33.59 33.29 26876 25598 28.24 32.30
3 11918 11376 24.80 27.44 8949 8393 24.61 27.98
4 7568 7113 23.71 25.76 3938 3770 20.11 26.05
5 4990 4732 19.74 23.44 1985 1927 14.66 21.64
6 3519 3356 16.11 20.11 1142 1082 14.36 21.16
7 2636 2498 15.17 19.82 662 615 13.75 19.19
8 2105 1990 15.01 19.50 451 432 13.53 20.83
9 1739 1646 16.79 20.72 288 265 14.58 23.40

10 1360 1277 13.46 19.11 186 169 15.05 24.26
11 1131 1057 12.11 15.23 164 151 9.76 17.88
12 986 915 15.92 21.42 76 67 19.74 32.84

Table 5.11: Comparison of our results with Buchser’s. cCC denotes the conflicting chunk
count we used to categorise the conflicting merges and conflicting files by. Every sub-
sequent pair of columns separated by vertical lines contains our results in the first
column (indicated by the O. in the subscript), and Buchser’s results in the second
column (indicated by the B. in the subscript). cO., CM and cB., CM show how many
conflicting merges we and Buchser analysed respectively. rO., CM, d. shows how many
of the conflicting merges in cO., CM we found to be derivable. rB., CM, c. shows how
many of the conflicting merges in cB., CM Buchser found to be canonical. Analogously,
cO., CF and cB., CF show how many conflicting files we and Buchser analysed respec-
tively. rO., CF, d. shows how many of the conflicting files in cO., CF we found to be
derivable. rB., CF, c. shows how many of the conflicting files in cB., CF Buchser found
to be canonical.

Table 5.11 shows the comparison of our results with Buchser’s. Columns cO., CM and

cB., CM show how many conflicting merges we and Buchser analysed respectively. As can

be seen, our numbers are higher. This is to be expected. Whereas we both analysed the

same projects, we conducted our study about six months after Buchser conducted his,

and in the meantime, these projects received further development, naturally leading to

5 RESULTS 63

more conflicting merges and conflicting files. Since the numbers do not differ greatly, we

view this as an indication for the correctness of our results.

rO., CM, d. shows the derivability rates of the conflicting merges we analysed, and

rB., CM, d. shows the canonical rates Buchser found for the conflicting merges he analysed.

As we expected, the derivability rates are lower than the canonical rates in most cases.

Curiously, for conflicting merges with one and two conflicting chunks however, the deriv-

ability rates we found are higher than the canonical rates, which is counter-intuitive, as

our concept of derivability is more strict than Buchser’s concept of canonical resolutions

(see Section 5.3). We will go into possible explanations for this later in the next Section

5.3.2.

cO., CF and cB., CF show how many conflicting files we and Buchser analysed respec-

tively. Again, our numbers are higher, but not greatly so. rO., CF, d. shows how many of

the conflicting files we analysed were derivable, rB., CF, c. shows how many of the con-

flicting files Buchser analysed were canonical. The derivability rates are lower in most

cases, as we would expect, except for conflicting files with one conflicting chunk. These

conflicting files showed higher derivability rates, which is counter-intuitive, as it was for

the conflicting merges, due to our more strict concept of derivability. We will go into

possible explanations for this in Section 5.3.2 below.

5.3.2 Findings

Our results are in line with the ones Buchser obtained in his study. The numbers

of conflicting merges and conflicting files that we analysed are higher than the ones

Buchser’s analysed, but not greatly so. Further, our derivability rates for both conflicting

merges and conflicting files are generally lower, while indicating the same trends that

Buchser found in his study (see Figures 5.1 and 5.2). They also do not differ greatly.

This strengthens Buchser’s results.

5 RESULTS 64

The only oddity is that for conflicting merges with one and two conflicting chunks, as

well as for conflicting files with one conflicting chunk, our derivability rate was higher

than Buchser’s canonical rate. We have two possible explanations for this.

One possibility is that the derivability rate is higher simply due to our bigger study

sets. We analysed 62’981 conflicting merges with one conflicting chunk, whereas Buchser

analysed 60’515. Further, we analysed 24’433 conflicting merges with two conflicting

chunks, whereas Buchser analysed 23’319. And lastly, we analysed 184’215 conflicting

files with one conflicting chunk, whereas he analysed 175’243. It is possible that these

additional study subjects led to an increased derivability rate.

Another possibility is that our consideration of semi-canonical conflicting chunk res-

olutions lead to this higher derivability rate. As we detailed in Section 2.2, there are

three possible semi-canonical conflicting chunk resolutions. Two of them constitute the

concatenation of the code segments from both branches. Such semi-canonical resolutions

would be considered canonical using Buchser’s approach, so they cannot be responsible

for the higher derivability rates. However, the third resolution constitutes the removal of

all conflicting code. Such a resolution would be considered non-canonical using Buchser’s

approach. Therefore, if the conflicting chunks within a conflicting merge are resolved

using this last semi-canonical resolution (and all of the contexts within the conflicting

files remain unchanged), then we consider the conflicting merge resolution and the con-

flicting file resolutions found within derivable, whereas Buchser would consider them

non-canonical. Such cases could therefore lead to an increased derivability rate over the

canonical rate.

5 RESULTS 65

Figure 5.1: Comparison of the derivability rate (our result) and the of the canonical
rate (Buchser’s result) for conflicting files with at most 12 conflicting chunks. A
conflicting resolution file is considered canonical if all conflicting chunks found within
were resolved canonically. A conflicting file resolution is considered derivable if all
conflicting chunks found within were resolved canonically or semi-canonically and no
contexts were changed.

Figure 5.2: Comparison of the derivability rate (our result) and the of the canonical
rate (Buchser’s result) for conflicting merges with at most 12 conflicting chunks. A
conflicting merge is considered canonical if all conflicting chunks found within its
conflicting files were resolved canonically. A conflicting merge resolution is considered
derivable if all conflicting file resolutions it contains are derivable.

66

6 Threats to Validity

Before we discuss the results obtained by our analysis further, we detail the limitations

of our approach and discuss the possible threats to validity.

6.1 Internal Validity

Our analysis has limitations that might threaten the validity of our results.

6.1.1 Limitations of our File Comparison

The file comparison we perform (see Section 4.3) can lead to false negatives in three

ways, which will in turn lower the derivability rates of the analysed conflicting files.

First, the section and line mapping used to determine how a conflicting chunk conflict

was resolved and whether a context was changed operates strictly line-based, using the

simple Java String comparison. This means that whenever there is a difference in at

least one character between a line within the unmerged resolution file and the actual

resolution file, the mapping will not succeed. This leads to lines and sections incorrectly

being marked as unmapped in the case of white-space or formatting differences. This is

undesirable, as our goal in this study is to determine whether developers resolve merge

conflicts in a derivable way in terms of behaviour, and not whether the code they commit

has equal formatting to the one found in the parent files. This issue could be mitigated

by using an auto-formatter to format both files beforehand, unifying their code structure.

Second, our mapping ignores syntactical and semantic equivalence. Our algorithm

only maps lines and sections if they are equal, but not if they are equivalent in either

6 THREATS TO VALIDITY 67

syntax or semantics, which leads to sections not being mapped even when the generative

approach whose feasibility we study would be able to generate an equivalent result.

As an example, if a developer resolves a conflicting chunk by picking the code from

one branch (i.e., they choose a canonical resolution), but they change the name of one

variable found within this code, our algorithms will deem the resolution non-canonical,

even though it is semantically equivalent to the canonical resolution. This is undesirable,

as we want determine how developers resolve merge conflicts in terms of behaviour, not

in terms of (just) picking the right code. This issue could be mitigated by testing for

syntactical or semantic equivalence at least in easy cases such as variable renaming.

Testing for semantic equivalence might not be viable, as e.g., the Halting Problem is not

computable.

Both of these limitations can lead to sections being falsely marked as unmapped, which

lowers both the canonical and semi-canonical conflicting chunk resolution rates and the

rate of unchanged contexts. This in turn lowers the derivability rates for the conflicting

files.

Another limitation of our mapping can lead to false intermediate results. Since we do

not perform any syntactical and semantic analysis of the files we analyse, we cannot say

what happens within unmapped lines of the actual resolution files. This especially has

implications if lines were added in between mapped sections. In the case of additional

lines in between mapped contexts and mapped conflicting chunk parts, as an example, we

can not determine what the developer added, and whether we should consider the context

to be changed or the conflicting chunk resolution to be non-canonical. By convention,

in these cases, we decided to mark the context as changed, rather than the conflicting

chunk to be solved non-canonically (see Section 4.3.3.4). This decision has no effect

on the derivability of the conflicting file (as both changed contexts and non-canonical

conflicting chunk resolutions render the conflicting file resolution non-derivable), but it

effects the resolution rates of the conflicting chunks and the rates of changed contexts.

6 THREATS TO VALIDITY 68

In conclusion, these limitations can lead to sections being falsely marked as unmapped.

While this is undesirable in terms of accuracy of our analysis, it means that the deriv-

ability rates we found in Sections 5.2 would only be higher. All of these limitations could

furthermore be addressed in future work (see Chapter 8).

6.1.2 Issues with JGit

There were multiple instances of our implementation returning invalid (intermediate)

results, namely during the recreation of conflicting merges and during the analysis of

conflicting files (see Tables 5.2 and 5.3). As we detailed in the accompanying text of

these Tables, we suspect that this was due to bugs within JGit or incorrectly set up

projects and commit histories. Only a low number of conflicting merges and files was

affected by this however, and since we decided to just skip them and not account for

them in the further result aggregation, we do not think that they have a significant

detrimental effect on the validity of our findings.

6.2 External Validity

As we stated in Section 4.1, we analysed the same projects that Buchser analysed in

his work. The wide range of programming languages that he chose guarantees that the

results do not merely depict merging practices particular to the development culture of

a certain language, but rather, it offers a broad view on different types of development

practices. As we could not find significantly different derivability rates between these

different languages (see Section 5.2), we view this as an indicator that our findings can

be generalised to projects of other languages.

However, it is important to consider that while the projects we analysed were classified

on GitHub as belonging to a certain programming language, this does not mean that their

6 THREATS TO VALIDITY 69

repository must only contain source code files of said language. GitHub uses Linguist15

to determine what languages are used within a project, and it will use the language

that occurs most frequently percentage-wise to label the project as to belonging to that

language.16 So, while a project that is labelled as JavaScript will contain files that are

written in JavaScript code, it may also contain files written in other languages like HTML

and CSS. Therefore, we cannot say how many of the files we analysed were actually

written in the language the project was labelled as, and therefore, whether the findings

can be generalised for source code files of this language specifically.

Furthermore, projects very often contain non-source code files like project manage-

ment tool files (e.g., Maven17 files used in Java development), configuration files and

READMEs in their repositories. As our analysis made no distinction between source

code files and non-source code files, we cannot state with certainty how developers tend

to resolve merge conflicts that occur in source code files as opposed to such auxiliary

files.

While this means that our findings cannot be generalised to the actual source code files

of a specific language, it does not threaten the validity of our results. Our goal in this

study is to determine how developers resolve merge conflicts on a project-wide basis, not

on a source code file basis, and as our approach analyses all conflicting files no matter

their type, our results paint a complete picture of the merge conflict resolution behaviour

of the developers when managing projects as a whole. If one wanted to investigate the

developers’ merging behaviour in more detail on a specific file basis, one could adapt our

tool easily to account for a more detailed analysis of different file types (see Chapter 8).

15https://github.com/github-linguist/linguist
16https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/

customizing-your-repository/about-repository-languages
17https://maven.apache.org/

https://github.com/github-linguist/linguist
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-repository-languages
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-repository-languages
https://maven.apache.org/

70

7 Discussion

In this Chapter, we discuss our results and the implications they have for our research

questions.

7.1 RQ1: How often do developers pick derivable merge
conflict resolutions, on a conflicting chunk, conflicting file
and conflicting merge level?

We found that in about 75 % of all cases, developers picked derivable conflicting chunk

resolutions. They furthermore mostly left the contexts unchanged (in about 80 % of all

cases). About 66 % of all conflicting files resolutions were found to be derivable, and

about 35 % of all conflicting merges were resolved in a derivable manner.

There were vast differences between the lists in terms of found conflicting merges and

conflicting files. Most conflicting merges and conflicting files were found within projects

from the C++ list (about 45 % in both cases). The list of projects written in TypeScript

made up the second biggest amount (about 20 % in both cases). The projects written

in Python, Java and GO all contributed about 10 % of conflicting merges and between

10 % and 15 % of conflicting files. Projects written in JavaScript only contributed about

5 % of conflicting merges and about 3 % of conflicting files. By far the smallest amount

of conflicting merges and files came from both lists of projects with randomly selected

names (Random (Low Rating) and (Random(High Rating)). The highly rated ones made

up about 1 % of conflicting merges and files, and the lowly rated ones made up about

7 DISCUSSION 71

0.2 % of conflicting merges, and less than 0.1 % of conflicting files. Due to the very small

amounts of conflicting files and conflicting merges found in these last two lists, we do

not think that their impact on our finding is substantial, and subsequently, we focus on

the lists of specified programming languages.

The derivability rates for the different lists of specified programming languages do not

differ much on conflicting file and conflicting merge level. For conflicting files, they range

from about 57 % to about 78 %, and for the conflicting merges, they range from about

30 % to about 47 %.

Interestingly, the resolutions rates of the conflicting chunks and the rate of changed

contexts were not a clear indicator for the derivability of the conflicting files and con-

flicting merges. Projects written in Java had very high rates of derivable conflicting

chunk resolutions and rates of unchanged contexts, and, as one would expect, they had

high derivability rates for both conflicting files and conflicting merges. However, projects

written in JavaScript had low rates of derivable conflicting chunk resolutions and lower

rates of unchanged contexts, but the derivability rates for conflicting files and conflicting

merges were not significantly lower than the ones for lists like C++, which had both a

higher derivability rate on a conflicting chunk level as well as a higher rate of unchanged

contexts. Furthermore, the derivability rates of the JavaScript projects were higher on

a conflicting file level and conflicting merge level than the ones for projects written in

Python, whose derivability rate for conflicting chunks and rate for unchanged contexts

were higher in both cases.

7.1.1 Findings

We gather from these results that a merge conflict resolution generator is feasible for

projects of different programming languages. In a substantial amount of all merge conflict

scenarios no matter the language, developers resolved the merge conflicts in a derivable

way which could be automated by such a tool.

7 DISCUSSION 72

However, further investigation into the nature of the merge conflicts found in the

projects of different languages is necessary. As we already detailed in Chapter 6, we did

not solely analyse merge conflicts found in source code files of the specified language, but

rather, we analysed all merge conflicts found in all files within the projects’ repositories.

It would be of interest to see in what files (source code files or non-source code files) the

merge conflicts tend to occur, and whether the developers’ merging behaviour changes

when handling such different file types. Furthermore, it would be of interest to determine

whether source code files of different programming languages show different rates of

derivability. This would shed further light on what merging scenarios of which file types

and languages would be most suited to our generative approach.

7.2 RQ2: What are the specific properties of such derivable
resolutions?

About 80 % of all conflicting merges were found to have between one and five conflicting

chunks, and their derivability rates lie between 49 % and 20 %. Conflicting merges with

one conflicting chunk constituted about 45 % of all analysed conflicting merges, and

they were resolved in a derivable way in about 49 % of cases. Conflicting merges with

more than five conflicting chunks generally showed lower derivability rates as a whole,

averaging at about 15 %.

Interestingly, the derivability rates of the conflicting file resolutions found within these

merges increased with higher conflicting chunk counts. This indicates that a majority

of conflicting files found in such conflicting merges with high conflicting chunk counts

were resolved in a derivable way, and the non-derivability of the conflicting merges as a

whole came about due to a low amount of non-derivable conflicting file resolutions.

We found that the vast majority of all conflicting files (about 81 %) contained only

one conflicting chunk. In about 74 % of these cases, the conflicting files were resolved

in a derivable manner. Conflicting files with more than three conflicting chunks made

7 DISCUSSION 73

up only a small percentage (about 6 %), and they showed lower derivability rates from

about 30 % for conflicting files with four conflicting chunks down to 16 % for conflicting

files with more than 12 conflicting chunk counts.

Further, the majority of conflicting merges contained only a low number of conflicting

files, with about 80 % having at most five conflicting files, and with about 45 % only

having one conflicting file. Their derivability rates ranged from 42 % for conflicting

merges with one conflicting file to about 26 % for conflicting merges with five conflicting

files. Conflicting merges with more than five conflicting files generally showed lower

derivability rates, with an average of about 25 %.

7.2.1 Findings

We gather from these results that in the vast majority of cases, a merge conflict resolution

generator is feasible, as the computational cost to generate the derivable resolutions is

low due to the low number of conflicting chunks within the conflicting merges. Even when

assuming the worst case scenario where all conflicting chunks within the conflicting merge

depend on each other, and no strategies to limit the resolution set can be applied (see

Section 2.3.3.1), the generation of the whole set of derivable conflicting merge resolutions

could be carried out at a low computational cost. Furthermore, in a considerable amount

of these merge conflict scenarios, the developers resolved the conflicts in a derivable way

which could be automated by such a generator. This further strengthens its feasibility.

For conflicting merges with more than five conflicting chunks, our approach might

be less feasible, as the generational cost increases exponentially in the worst case, and

because these conflicting merges generally showed low derivability rates. However, it is

important to consider that conflicting merges with high conflicting chunk counts gen-

erally showed high percentages of derivable conflicting file resolutions (see Table 5.10).

This, combined with the findings that about 81 % of all conflicting files only contained

one conflicting chunk, and that in 74 % of these cases, they were resolved in a deriv-

7 DISCUSSION 74

able way, indicates that in many such cases, the conflicting merges with high conflicting

chunk counts contained many conflicting files with only one conflicting chunk, and that

these conflicting files were often resolved in a derivable way. If the conflicting chunks

within these conflicting files do not depend on each other (which could be likely due to

their placement in different conflicting files), then one could apply the strategies we dis-

cussed in Section 2.3.3.1 to limit the resolution set of the generation, and our generative

approach might become viable even for such conflicting merges with many conflicting

chunks. However, to determine if and how often these strategies could be applied, a

detailed investigation into the dependencies between the conflicting chunks would need

to be conducted (see Chapter 8).

75

8 Conclusion and Future Work

We found that in many occurrences of merge conflicts, a generative approach to their

resolution is feasible. Most often, the number of conflicting chunks within the conflicting

merges is low, which would allow for a complete generation of all possible derivable reso-

lutions at a low computational cost. Furthermore, in many of these cases, the developers

resolved the merge conflicts in a derivable way which such a tool could automate.

However, more research into the specific properties of merge conflicts and their reso-

lutions by the developers is needed.

To this end, our analysis could be extended. As we detailed in Chapter 6, our ap-

proach has certain limitations which could be mitigated to allow for better insight into

the merging behaviour of developers. The use of a formatter during the section mapping

(see Section 4.3) is one such possible step. By eliminating white-space and formatting

differences between the unmerged resolution file and the actual resolution file, the ac-

curacy of the mapping could be increased, allowing for a more accurate determination

of the derivability of the merge conflict resolutions, and subsequently, for better insight

into the merging behaviour of the developers.

Further, as our analysis was purely line-based, one could adapt our tool to conduct a

syntactical and semantic analysis of the merge conflicts and their subsequent resolutions.

By taking these aspects into account, one could determine how often so-called semi-

structured merge conflicts [1] occur, and whether developers resolve them in a derivable

manner or not.

8 CONCLUSION AND FUTURE WORK 76

Since we did not analyse the impact of the specific file types on the merge conflict

resolutions, one could account for this in a subsequent study by adapting our tool to

conduct a more detailed analysis that investigates this impact. This would give further

insight into the merging behaviour of developers in different scenarios and whether they

behave differently when resolving merge conflicts in source code files as opposed to non-

source code files. Furthermore, such an analysis would allow for better insight into which

files within the projects tend to conflict most often.

As our study provided purely quantitative results of the derivability of merge conflicts,

a qualitative study on what exactly happens in non-derivable merge conflict resolutions

would shed light on how developers resolve merge conflicts when they do not just pick

the code form one or both branches. It would especially be of interest to see whether

these non-derivable merge conflict resolutions occurred due to white-space and format-

ting differences or simple syntactical changes (like renamed variables) which could be

addressed by a sophisticated merge conflict resolution generator.

Moving one step further, as the goal of our work was to determine the feasibility of

a merge resolution generator by providing quantitative results, one could investigate

other feasibility aspects. To this end, conducting a user study would be of interest to

determine if there is general interest in such a tool by developers, and if so, what they

envision such a tool to look like and what features they would expect it to entail.

To conclude, much more research into merge conflicts and their resolutions is needed to

further investigate the feasibility of a generative approach to merge conflict resolutions.

However, our results so far are promising, and we are confident that further research is

warranted.

77

List of Figures

2.1 Commit history of Alice’s project. The alphabetically named boxes repre-

sent the issued commits with their included changes to the specified files.

+ indicates a file being added, ~ indicates a file being altered, - indicates a

file being deleted. The arrows in between the commits illustrate the pro-

gression of the project’s history. The blue boxes represent branches. The

arrows extending from them to certain commits represent their current

location. 7

2.2 Updated commit history of Alice’s project. The alphabetically named

boxes represent the issued commits with their included changes to the

specified files. + indicates a file being added, ~ indicates a file being

altered, - indicates a file being deleted. The arrows in between the com-

mits illustrate the progression of the project’s history. The blue boxes

represent branches. The arrows extending from them to certain commits

represent their current location. 9

2.3 Three-way merge of branch dev into branch main. As before, the alpha-

betically named boxes represent the issued commits with their included

changes to the specified files. + indicates a file being added, ~ indicates a

file being altered, - indicates a file being deleted. The arrows in between

the commits illustrate the progression of the project’s history. The blue

boxes represent branches. The arrows extending from them to certain

commits represent their current location. 11

FIGURES 78

2.4 The main.py file during the merge. Non-conflicting code is overlayed green,

whereas conflicting code is overlayed red. Git’s merging markers are over-

layed grey. 12

2.5 Possible conflicting chunk resolutions of the conflicting chunk within main.py,

grouped within the three categories. 14

2.6 Illustration of the concept of contexts, applied to the main.py file from our

example. Line 1 marks the first context, lines 2-6 mark the conflicting

chunk, and lines 7-9 mark the second and last context. 16

4.1 Different file variants involved in the recreation of a conflicting merge of

branch B into branch A. The base file variant and both parent file variants

are formatted together along with their merge conflicts, resulting in the

unmerged resolution file (URF) which contains the conflicting chunks.

The file variant found in the conflicting merge, i.e. the actual resolution

file (ARF), contains the resolutions to these conflicting chunks. Note that

all files except the unmerged resolution file are included in the project’s

commit history in their respective commits. 28

4.2 The URF and ARF we use to illustrate the analysis process. The URF file

includes the conflicting chunks to be resolved, and the ARF contains the

resolved conflicting chunks, i.e. the conflicting chunk resolutions. 29

4.3 Sections of the URF. As can be seen in the SECTION column, every con-

flicting chunk (sections CCP1 and CCP2) is enclosed by contexts (sections

CTX). Their section indices are shown in the INDEX column. 31

FIGURES 79

4.4 Result of the section and line mapping between the URF and the ARF. As

shown in the SECTION and INDEX column of the ARF, six sections were

found in total, namely Section(CTX, 1), Section(CCP2, 3), Section(CTX,

4), Section(CPP1, 5), Section(CPP2, 6) and Section(CTX, 10). They are

shown at their respective place line-wise within that column. Their map-

ping status shown in the MAPPED column of the URF reflects their suc-

cessful mapping. 32

4.5 Result of the aggregation of unmapped lines within the ARF. As can be

seen in the SECTION and INDEX columns of the ARF, the unmapped lines

(line 1, 7, 11-12 and 15-18) were gathered into multiple Section(NONE, -1). 34

4.6 Final result of the mapping. As can bee seen when compared with Fig-

ure 4.5, Section(CTX, 1) is now marked as unmapped (according to Section

4.3.3.1). Further, Section(CCP1, 11), Section(CCP2, 12) and Section(CTX,

13) are now marked as unmapped (according to Section 4.3.3.2). Con-

trary to the intermediate result in Figure 4.5, Section(CTX, 4) is now also

marked as unmapped (according to Section 4.3.3.3). Finally, Section(CTX,

7), Section(CCP1, 8) and Section(CCP2, 9) are marked unmapped (accord-

ing to Section 4.3.3.4). And lastly, Section(CCP1, 2) is also marked as

unmapped (according to 4.3.4). 38

4.7 Result aggregation of the file comparison between URF and ARF. 39

4.8 Database schema used to gather our results. For each database, the first

column denotes the names of the rows found within the database, the

second column denotes the types associated with said names, and the

third column indicates whether the rows are auto-incrementing (AI), and

whether they constitute a primary key (PK) or a foreign key (FK). 41

FIGURES 80

5.1 Comparison of the derivability rate (our result) and the of the canoni-

cal rate (Buchser’s result) for conflicting files with at most 12 conflicting

chunks. A conflicting resolution file is considered canonical if all conflict-

ing chunks found within were resolved canonically. A conflicting file res-

olution is considered derivable if all conflicting chunks found within were

resolved canonically or semi-canonically and no contexts were changed. . . 65

5.2 Comparison of the derivability rate (our result) and the of the canonical

rate (Buchser’s result) for conflicting merges with at most 12 conflict-

ing chunks. A conflicting merge is considered canonical if all conflict-

ing chunks found within its conflicting files were resolved canonically. A

conflicting merge resolution is considered derivable if all conflicting file

resolutions it contains are derivable. 65

81

List of Tables

5.1 Overview of the analysed projects. ctotal shows the total amount of sched-

uled projects. rok shows the percentage of successfully analysed projects.

rskip shows the percentage of projects for which the analysis was skipped,

and rfail shows the percentage of projects for which the analysis failed. . . 43

5.2 Overview of the analysed conflicting merges. ctotal shows the total amount

of scheduled conflicting merges. rok shows the percentage of success-

fully analysed conflicting merges. rskip shows the percentage of conflicting

merges for which the analysis was skipped, and rfail shows the percentage

of conflicting merges for which the analysis failed. 44

5.3 Overview of the analysed conflicting files. ctotal shows the total amount

of scheduled conflicting files. rok shows the percentage of successfully

analysed conflicting files. rskip shows the percentage of conflicting files

for which the analysis was skipped, and rfail shows the percentage of

conflicting files for which the analysis failed. 46

5.4 Overview of the analysed conflicting chunks. ctotal shows the total amount

of analysed conflicting chunks. rcanonical shows the percentage of canon-

ically resolved conflicting chunks. rsemi-canonical shows the percentage of

semi-canonically resolved conflicting chunks, and rnon-canonical shows the

percentage of non-canonically resolved conflicting chunks. 48

TABLES 82

5.5 Overview of the analysed contexts. ctotal shows the total amount of anal-

ysed contexts. runchanged shows the percentage of contexts that were left

unchanged, and rchanged shows the percentage of contexts that were altered. 49

5.6 Derivability rates of conflicting files. ctotal shows the total amount of

analysed conflicting files. rderivable shows the percentage of conflicting

files that were resolved in a derivable manner, and rnon-derivable shows the

percentage of conflicting files that were resolved in a non-derivable manner. 51

5.7 Derivability rates of conflicting mserges. ctotal shows the total amount of

analysed conflicting merges. rderivable shows the percentage of conflicting

merges that were resolved in a derivable manner, and rnon-derivable shows

the percentage of conflicting merges that were resolved in a non-derivable

manner. 52

5.8 Derivability of conflicting files, categorised by their conflicting chunk count.

cCC denotes the conflicting chunk count of each category. ccount shows

the amount of conflicting files within each category. rcount shows how

much each category makes up percentage-wise out of all conflicting files.

rderivable shows the percentage of conflicting files that were resolved in a

derivable way within each category, and rnon-derivable shows the percentage

of conflicting files that were resolved in a non-derivable way within each

category. 54

TABLES 83

5.9 Derivability rates of conflicting merges, categorised by their conflicting

file count. cCF denotes the conflicting file count of each category. ccount

shows the amount of conflicting merges within each category. rcount shows

how much each category makes up percentage-wise out of all conflicting

merges. rderivable shows the percentage of conflicting merges that were

resolved in a derivable way within each category, and rnon-derivable shows

the percentage of conflicting merges that were resolved in a non-derivable

way within each category. 56

5.10 Derivability rates of conflicting merges, categorised by their conflicting

chunk count. cCC denotes the conflicting chunk count of each category.

cCM shows the amount of conflicting merges within each category. rCM

shows how much each category makes up percentage-wise out of all con-

flicting merges. rCM, d. shows the percentage of conflicting merges that

were resolved in a derivable way within each category, and rCM, non-d.

shows the percentage of conflicting merges that were resolved in a non-

derivable way within each category. Further, the amount of conflicting

files found within the conflicting merges of each category are listed in

cCF. rCF shows how much each category makes up percentage-wise out

of all conflicting files. rCF, d. shows the percentage of conflicting files that

were resolved in a derivable way within each category, and respectively,

rCF, non-d. shows the percentage of conflicting files that were resolved in a

non-derivable way. 58

TABLES 84

5.11 Comparison of our results with Buchser’s. cCC denotes the conflicting

chunk count we used to categorise the conflicting merges and conflicting

files by. Every subsequent pair of columns separated by vertical lines con-

tains our results in the first column (indicated by the O. in the subscript),

and Buchser’s results in the second column (indicated by the B. in the

subscript). cO., CM and cB., CM show how many conflicting merges we and

Buchser analysed respectively. rO., CM, d. shows how many of the con-

flicting merges in cO., CM we found to be derivable. rB., CM, c. shows how

many of the conflicting merges in cB., CM Buchser found to be canonical.

Analogously, cO., CF and cB., CF show how many conflicting files we and

Buchser analysed respectively. rO., CF, d. shows how many of the conflict-

ing files in cO., CF we found to be derivable. rB., CF, c. shows how many of

the conflicting files in cB., CF Buchser found to be canonical. 62

85

Bibliography

[1] Paola Accioly, Paulo Borba, and Guilherme Cavalcanti. “Understanding semi-structured
merge conflict characteristics in open-source java projects”. In: Empirical Software
Engineering 23 (2018), pp. 2051–2085.

[2] Severin Buchser. “An empirical study on the human role in merge conflict resolu-
tion”. Bachelor’s Thesis. University of Bern, 2022.

[3] Scott Chacon and Ben Straub. Pro Git. Springer Nature, 2014.

[4] Gleiph Ghiotto et al. “On the nature of merge conflicts: a study of 2,731 open source
java projects hosted by github”. In: IEEE Transactions on Software Engineering
46.8 (2018), pp. 892–915.

[5] Jon Loeliger and Matthew McCullough. Version Control with Git: Powerful tools
and techniques for collaborative software development. " O’Reilly Media, Inc.", 2012.

[6] Nicholas Nelson et al. “The life-cycle of merge conflicts: processes, barriers, and
strategies”. In: Empirical Software Engineering 24 (2019), pp. 2863–2906.

[7] Nazatul Nurlisa Zolkifli, Amir Ngah, and Aziz Deraman. “Version control system:
A review”. In: Procedia Computer Science 135 (2018), pp. 408–415.

	1 Introduction
	1.1 Research Questions
	1.2 Main Contributions
	1.3 Structure of this Work

	2 Background and Motivation
	2.1 Git
	2.1.1 Commits
	2.1.2 Branches
	2.1.3 Merging
	2.1.4 Merge Conflicts

	2.2 Merge Conflict Resolutions
	2.2.1 Example

	2.3 A Generative Approach to Merge Conflict Resolutions
	2.3.1 Derivability
	2.3.2 Complexity
	2.3.3 Generational Cost

	3 Related Work
	3.1 Buchser's Study
	3.2 Differences of our Approach
	3.2.1 Expanded Analysis of Conflicting Chunk Resolutions
	3.2.2 Consideration of Contexts and Derivability
	3.2.3 No Limitations of Conflicting Chunk Counts

	3.3 Other Related Work

	4 Methodology
	4.1 Experimental Subjects
	4.2 Analysis
	4.2.1 Workflow

	4.3 File Comparison
	4.3.1 Creation of the Section List of the URF
	4.3.2 Section and Line Mapping
	4.3.3 Handling Unmapped Lines
	4.3.4 Handling Unmarked Sections
	4.3.5 Result

	4.4 Output

	5 Results
	5.1 Overview of the Dimensions of our Study Sets
	5.1.1 Projects
	5.1.2 Conflicting Merges
	5.1.3 Conflicting Files
	5.1.4 Conflicting Chunks
	5.1.5 Contexts

	5.2 Derivability
	5.2.1 Overview
	5.2.2 Categorised Derivability Rates

	5.3 Comparison with Buchser's Results
	5.3.1 Categorised Resolution Rates
	5.3.2 Findings

	6 Threats to Validity
	6.1 Internal Validity
	6.1.1 Limitations of our File Comparison
	6.1.2 Issues with JGit

	6.2 External Validity

	7 Discussion
	7.1 RQ1: How often do developers pick derivable merge conflict resolutions, on a conflicting chunk, conflicting file and conflicting merge level?
	7.1.1 Findings

	7.2 RQ2: What are the specific properties of such derivable resolutions?
	7.2.1 Findings

	8 Conclusion and Future Work
	Figures
	Tables
	Bibliography

