
An empirical study on the human role
in merge conflict resolution

Bachelor’s Thesis

Severin Buchser

from

University of Bern

Faculty of Science, University of Bern

29.12.2022

Prof. Dr. Timo Kehrer

Alexander Boll

Software Engineering Group

Institute of Computer Science

University of Bern, Switzerland

Abstract

Modern software engineering often employs a version control system (VCS) to collaborate on a project,
but collaboration inevitably leads to merge conflicts, hindering the automation of merging. Many attempts
to predict, prevent and characterize conflicts have been made, but more research on the topic of merge
conflict resolution needs to be conducted. Therefore, we test the feasibility of an approach that aims
to improve the resolution of existing merge conflicts to add to this research field. To investigate the
feasibility of the approach, we studied how often humans intervene in the resolution of merge conflicts
for 8500 open-source projects from GitHub, containing a total of 119 794 conflicting merges, 217 712
conflicting files, and 297 126 conflicting chunks. We found that (i) 34.11 % of conflicting merges were
resolved by picking one of the conflicting chunks in each conflict. Further, (ii) 46.29 % of conflicting
files were resolved using the above method, and (iii) 80.63 % of conflicting chunks, i.e., single conflicts,
were resolved using the abovementioned method. Additionally, we found that (iv) language or popularity
of the projects does not influence the resolution process, but (v) the number of conflicts in a conflicting
merge, respectively, in a conflicting file does play a role. We also studied two possible indicators, commit
count and contributor count, on their predictive power on conflicting merges, and the results show that (vi)
they are insignificant. We concluded that the approach to improve the resolution of conflicting merges is
infeasible because the rate at which the conflicting merges were resolved by picking an existing chunk is
too low in combination with performance problems concerning a growing number of conflicts.

i

Contents

1 Introduction 1

2 Theory 3
2.1 Version Control System . 3
2.2 Merging . 4

2.2.1 Merge Output . 5
2.3 Merge Conflicts . 7
2.4 Resolving Merge Conflicts . 9
2.5 Canonical Conflicting Merge Resolutions . 10

3 Related Work 12
3.1 Empirical Studies based on Repository Analysis of Git 12
3.2 Merge Conflict Resolution . 13
3.3 Prevention of Merge Conflicts . 13

3.3.1 Early Prevention . 13
3.3.2 Merge Techniques . 14

4 Methodology 15
4.1 Data . 15
4.2 Data Collection . 15

4.2.1 Generating Canonical Conflicting Merge Resolutions 17
4.2.2 Metadata . 18

5 Results 19
5.1 Correct Rate . 19
5.2 Metadata . 23

6 Threats to Validity 25
6.1 Internal Validity . 25
6.2 External Validity . 27
6.3 Construct Validity . 27

7 Discussion 29
7.1 Summary of Key Findings . 29
7.2 Implications . 31

ii

CONTENTS iii

7.3 Recommendations . 31

8 Conclusion and Future Work 33

1
Introduction

Concurrent collaboration is a necessary aspect of software engineering. A modern and widely spread
solution to foster concurrent collaboration is a VCS. As described by Zolkifli et al. [29], a VCS has many
advantages, for example, keeping track of older versions of projects and enabling parallel collaboration,
which significantly increases productivity as well as efficiency. A VCS automates many procedures, like
reverting to an old version of a project or, as mentioned, the collaboration between developers, allowing
concurrent changes to be integrated into the project. The VCS used in this thesis is called Git1. Git is used
by Google2, Microsoft3 and other well-known software companies.

The process of integrating concurrent changes is called merging, and is mostly automated, using
many different merge techniques which focus on conflict prevention, see Section 3.3. As opposed to
syntactical or semantical merge techniques, Git uses a text-based approach which allows projects of all
types to involve Git. However, the downside of a text-based approach is the production of additional
false-positive conflicts [23]. The reason for this behavior is that no text-based technique can prevent or
resolve all conflicts because there is no heuristic to let an algorithm decide on the correct resolution. For
such a heuristic to exist, the developer’s intent (semantical correctness) or, at the very least, compilability
(syntactical correctness) would need to be known. Git does not support either of those and thus cannot
choose the correct resolution, prompting the developer to intervene. This problem does not only apply to
the merge technique of Git. Today, the perfect merge technique does not exist with the current state of
technology, and contributors must evaluate and resolve conflicts manually at some point, no matter the
merge technique.

Nelson et al. [22] described the manual conflict resolution process in five steps. Initially, in the
development process (step one, development), developers face a structured workflow until they encounter
a merge conflict. Resolving conflicts is an interruption of the workflow at which a developer has to take
a step back and recognize the conflict (step two, awareness). Then, the information about the conflict
and its origin has to be gathered (step three, planning) to determine how to create or choose the correct
resolution (step four, resolution). This process becomes difficult quickly with a bigger conflict count [6].
The last step Nelson mentioned is the evaluation of the resolution (step five, evaluation). The contributors

1https://git-scm.com/ accessed on Nov 13, 2022
2https://www.google.ch/ accessed Dec 2, 2022
3https://www.microsoft.com/ accessed Dec 2, 2022

1

https://git-scm.com/
https://www.google.ch/
https://www.microsoft.com/

CHAPTER 1. INTRODUCTION 2

need to check if the resolution is syntactically and semantically correct. The time and effort those tasks
consume should be prevented as much as possible, resulting in more comfort when merging and increasing
productivity and efficiency [10].

In this work, we want to investigate the feasibility of an automatic merge conflict resolution approach.
This approach tries to suggest the best-suited resolution, easing the strain on developers. The idea of this
automatic resolver is to generate all possible canonical resolutions of a conflicting merge, see Section 2.5.
Each resolution could then be evaluated based on additional criteria like compilation success and test
success rate. Take the language Java4 for example. Java’s compiler can detect syntactical errors in
a program. Java also has many different testing frameworks whose tests can detect a few semantical
errors. With build automation tools like Maven5, an interface is provided to run the aforementioned tasks
(compilation and testing). By tapping into the interface and extracting information about compilation and
testing, the state of a program can be evaluated: Programs that do not compile are unusable but could be
ranked by the number of errors encountered. The ones that do compile can be ranked by their test scores.
The higher the score, the higher it ranks in usability. Based on the rankings of the resolutions with the
highest scores, a suggestion on what resolution is best suited could then be provided to the developer.

Since only the feasibility of this approach is discussed in this thesis, it is essential to find out how
humans resolve merge conflicts. There are many studies examining the structure of conflicts and how
they could be prevented ([12], [7], [16]), but only a few regarding the frequency of human intervention
in the merge conflict resolution process [12]. To study human behavior, we collected data from different
open-source projects from GitHub6, categorized by criteria like language or popularity. We developed
two tools for the data collection process: The first tool7 is used for project collection and uses GitHub6

and its API, the GitHub API8. The second, more elaborate tool9 analyzes the merge conflicts of those
projects. When evaluating the results of the analysis, the focus lies on answering the following two research
questions:

RQ1: How often do humans intervene in merge conflict resolution for a VCS such as Git?

RQ2: What factors influence the number of merge conflicts and their resolutions in a Git project?

First, we cover background knowledge, necessary to understand our further work in Chapter 2, Theory.
Next, we refer to related work, covering additional useful information for this thesis in Chapter 3, Related
Work. Our methodology is then explained in Chapter 4, Methodology: What data is used and how the
data is extracted and evaluated. This extracted data and the evaluation of it is then presented in Chapter 5,
Results and discussed in Chapter 7, Discussion. A conclusion of our work is then given in Chapter 8,
Conclusion and Future Work.

4https://www.java.com/ accessed Dec 2, 2022
5https://maven.apache.org/ accessed Dec 2, 2022
6https://github.com/ accessed Dec 2, 2022
7https://gitlab.inf.unibe.ch/sb18n092/projectlistgenerator accessed Dec 18, 2022
8https://docs.github.com/de/rest?apiVersion=2022-11-28/ accessed Dec 2, 2022
9https://gitlab.inf.unibe.ch/SEG/theses/mergeconflictresolution, accessed Dec 13, 2022

https://www.java.com/
https://maven.apache.org/
https://github.com/
https://gitlab.inf.unibe.ch/sb18n092/projectlistgenerator
https://docs.github.com/de/rest?apiVersion=2022-11-28/
https://gitlab.inf.unibe.ch/SEG/theses/mergeconflictresolution

2
Theory

In this chapter, we will give theoretical background to the general purpose and usage of a VCS and cover
its merge process, i.e. the inner workings of the merge process and the formation and resolution methods
of merge conflicts.

2.1 Version Control System

In many software projects, a VCS is used. There are many VCS like Git1, SVN (Apache Subversion)2,
and Mercurial3. To give theoretical background, we use terminology and examples from Git, as it is the
VCS used in this work. Git is an open-source VCS with many features, as mentioned in Chapter 1, and is
perfectly suited for this thesis. For additional reading material on Git, see the book by Chacon and Straub
called ”Pro Git” [9]. Git uses an updated version of this book in their documentation4.

The usage of a VCS becomes more important in collaborative, complex, or big projects, as it documents
all changes the project undergoes. A change can be categorized into deletions, additions, or modifications
which are applicable to a whole file or a few lines within a file. Additionally, changes can be grouped into
a so-called commit to further improve the overview of the project’s history.

Another essential feature of a VCS is the collaboration of different contributors, which is made easy
with a tree-like structure consisting of commits as vertices with multiple branches. The VCS creates
multiple branches with parallel project variants. Using branching, each contributor is able to create new
commits and append them to one branch in particular. Those changes won’t translate into the other
branches - especially since the main version of the project is unaffected by the changes. The tree-like
structure implies that one way or another all branches originate from one root. Because of this fact, every
pair of branches have at least one common ancestor, which itself is a commit of the project.

1https://git-scm.com/ accessed on Nov 13, 2022
2https://subversion.apache.org/ accessed Dec 14, 2022
3https://www.mercurial-scm.org/ accessed Dec 14, 2022
4https://git-scm.com/book/en/v2 accessed Dec 14, 2022

3

https://git-scm.com/
https://subversion.apache.org/
https://www.mercurial-scm.org/
https://git-scm.com/book/en/v2

CHAPTER 2. THEORY 4

A version of a project is therefore the replay of changes since the initialization of the project up to a
certain commit within a certain branch. The recovery of such a version is made possible with the above
information provided by the VCS. We will sometimes refer to a version by the identification/name of the
commit at which the replay of changes stopped.

2.2 Merging

A merge attaches the changes of one or more branches to another branch, such that the branch which
is merged into will also contain the changes of the other branches. In this thesis, we limit ourselves to
merges with two branches since the so-called octopus merges with more than two branches are hardly ever
used, see Section 6.1. Let us call the branch which is merged into the merging branch. The most recent
common ancestor in a merge is called the merge-base. Only the changes after the merge-base commit will
be translated into the merging branch because all the changes before the merge-base are already adopted in
both branches.

The merge is performed by a merge algorithm, of which many exist, using different approaches and
techniques. But since we are using the default merge algorithm provided by Git, we only focus on Git’s
default merge algorithm. Further examples of algorithms can be found in Section 3.3.2. Furthermore, the
default merge algorithm of Git only allows three-way-merging and is text-based, meaning that the merge
is performed solely on textual analysis, not considering other factors like syntax.

Figure 2.1: Merge example from the official Git merge description with two branches, ”topic” and ”master”.
Branch ”topic” at commit C is merged into ”master” at commit G producing the merged commit H.

To explain how this algorithm works, we use the short example directly from the official git merge
description5. Look at the example tree-like structure shown in Figure 2.1. It has two branches called
”master” and ”topic”. The ”master” branch splits into two branches at commit E, which is the merge-base
in this example. Assume that at commit E, there are two files called ”file-1.txt” and ”file-2.txt”, both
containing two lines of content. Both branches receive changes until branch ”topic” gets to commit C

and branch ”master” gets to commit G. In both branches, both files receive their respective changes. See
Figure 2.2 for the contents of the files in the different commits.

5https://git-scm.com/docs/git-merge/ accessed on Nov 2, 2022

https://git-scm.com/docs/git-merge/

CHAPTER 2. THEORY 5

Figure 2.2: Example file contents of the merge shown in Figure 2.1. Files with a green backgrounds
contain changes. The, for this merge, irrelevant commits, A, B, D, and F are not included in this figure.

At this point, the ”topic” branch is merged into the ”master” branch. Notice that in branch ”topic”
only ”file-2.txt” received a change, and in branch ”master” only ”file-1.txt” received a change. The merge
combines all changes, and the result will be the commit H with files shown in Figure 2.2 as well. One can
see that now the change made in branch ”topic” in ”file-2.txt” and the change made in branch ”master” in
”file-1.txt” are both adopted at commit H, see Figure 2.2.

2.2.1 Merge Output

In Git, a merge operates on each file individually without any knowledge of the other files. For this reason,
we will focus only on an individual file, in other words, the pair of files to be merged. The merge splits
the two files into sections of text named merge chunks and stores them in an ordered sequence. Usually,
a merge chunk consists of a few lines of text. How exactly the chunks are produced is decided by the
so-called merge strategy. There are many strategies, for example, ORT6 (Ostensibly Recursive’s Twin)
of Git. The concrete implementation of this merge strategy is out of scope for this thesis. Here, we only
concentrate on the output produced by the merge.

6https://git-scm.com/docs/merge-strategies#Documentation/merge-strategies.txt-ort/
accessed Nov 22, 2022

https://git-scm.com/docs/merge-strategies#Documentation/merge-strategies.txt-ort/

CHAPTER 2. THEORY 6

After the chunk sequences for each file are created, the merge concatenates the chunks of both
sequences in such a way that the resulting sequence of chunks contains the changes of both files as well as
the unchanged content. The sequence preserves the order in which the merge will concatenate the text
from the chunks to form the merged file.

Figure 2.3: Chunk sequences produced by the merge-algorithm containing one conflict. Chunks with a
green background contain changes (in this case modifications). The top four sequences are the unmerged
sequences of the files and in the middle are the combined sequences. On the bottom are the merged
sequences.

In the case of the above example, the merge will first split each file into chunks like shown in Figure 2.3.
Then the algorithm detects that the first chunk in every file does not contain a change, so it must be the
same chunk in both commits. Thus, the chunks are combined to form one single chunk, representing both.
Since the subsequent two chunks in both sequences do not contain the same content, the merge-algorithm
will pick the one with a change. One of the chunks must have a change, else they would be the same chunk
and could be combined. In the end, this produces a new chunk sequence containing the unchanged content
as well as the changed content. The case for addition and deletion works similarly. The chunks are indexed
so that the merge detects chunks that are either added or deleted.

CHAPTER 2. THEORY 7

2.3 Merge Conflicts

A merge does not always succeed. The problems that can occur whilst merging are called merge conflicts

or simply just conflicts. Merge conflicts arise when one or more contributors make different changes
in the same location in two separate branches. This produces two merge chunks for the same location
containing different changes. Those two chunks are called conflicting chunks (CCs), and they represent
exactly one merge conflict. The first CC is the merge chunk of the merging branch and the second CC is
the merge chunk from the other branch. It cannot be automatically inferred which chunk should be used
in the merged file because the contributors’ intent is unknown to a machine. In this context, the intent
of the contributor refers to semantical correctness. Other aspects, like the compilability of the program
(syntactical correctness), are also not considered by the merge algorithm of Git. Therefore the developer
will be prompted to intervene.

Let us introduce some more notation: A file containing one or more merge conflicts is denoted as a
conflicting file (CF). A merge containing at least one CF is called a conflicting merge (CM), and therefore
a CM also has at least one merge conflict. See Figure 2.4.

Figure 2.4: Composition visualization of a CM, CF and CCs. There are n CFs within the CM and mi

merge conflicts within the i-th CF.

Again, to better explain how merge conflicts arise and how they are treated, an example is best: Assume
the same example as in Section 2.2, with the difference that in commit C, ”file-1.txt” now also contains a
change, see Figure 2.5. Notice that ”file-1.txt” has different changes in the same location in both branches.
This time, a merge conflict will arise when merging. Even though the merge has conflicts, it can still be
partially merged: All non-conflicting merge chunks and files will be merged normally, and for the CCs,
both will be included in the final merged chunk sequence. The chunk sequences of the merge are shown in
Figure 2.6.

CHAPTER 2. THEORY 8

Figure 2.5: Example file contents of the merge shown in Figure 2.1. Files with a green background contain
changes. The two files with red borders have conflicting changes. The, for this merge, irrelevant commits,
A, B, D, and F are not included in this figure.

Figure 2.6: Chunk sequences produced by the merge-algorithm containing one conflict. Chunks with a
green background contain changes and chunks with a red border mark conflicting chunks. Here ”file-1.txt”
contains conflicting merge chunks. The top four sequences are the unmerged sequences of the files and in
the middle are the combined sequences. On the bottom are the (partially) merged sequences.

CHAPTER 2. THEORY 9

For the final step of producing the merged file, when confronted with a CF, the merge-algorithm
produces a partially merged file where both CCs are included, as shown in Figure 2.5, commit H ”file-
1.txt”. The lines of a partially merged file not part of any merge chunk are called the conflict markers.
Listing 1 shows the conflict markers: The beginning marker, ”<<<<<<<”, together with the branch
which is merged into, ”HEAD”, is on line 1. Line three contains the separator, ”=======” and line
5 contains the ending marker, ”>>>>>>>”, with the branch which is to be merged into ”HEAD”,
”other-branch-name”.

1 <<<<<<< HEAD

2 Content of first CC

3 =======

4 Content of second CC

5 >>>>>>> other-branch-name

Listing 1: Example of conflict markers. Lines 1, 3, and 5 contain the conflict markers.

2.4 Resolving Merge Conflicts

If conflicts appear, they must first be resolved by one of the contributors, or else the merge will not go ahead
and abort, reverting to before the merge. Note that it is possible to create commits with conflict markers
still present since the conflicts can be marked as resolved without actually resolving them. However, this
would result in unusable code, which is not the intended way.

To resolve a conflict, a developer can choose one of two ways: The first method is manually picking
one of the two CCs. Carrying on the example from the previous section, the contributor can pick the CC
from commit G, which is the first CC, or the contents in commit C, which is the second one. Another
way to resolve the conflict is by writing a new resolution and disregarding all other resolutions. This
approach also includes committing files with conflict markers still present. Note that a developer could
also introduce new changes outside of the conflicting chunks. This issue will be discussed in Section 6.1.

Let us introduce some further notation: The first method is denoted as the canonical resolution and
the second one as the manual resolution. Additionally, a resolution for a complete merge is denoted
as a conflicting merge resolution (CMR), and it consists only of the corresponding conflicting file
resolutions (CFRs), which themselves consist of conflicting chunk resolutions (CCRs). For each of
the three granularities, all conflicts within the domain (merge, file, or chunk) have to be resolved:

• CMR all conflicts of the CM are resolved

• CFR all conflicts of the CF are resolved

• CCR the conflict belonging to the CCs is resolved

To simplify the resolution process, most integrated development environments (IDEs) provide a
graphical interface where the conflicts can be resolved, see Figure 2.7.

CHAPTER 2. THEORY 10

Figure 2.7: A screenshot of the merge conflict resolution dialogue of the IntelliJ IDEA. On the left is the
”HEAD” branch, in the middle a live preview of the merged file, and on the right is the other branch. One
can edit the files directly (manual reolution) or can accept the ”left” or ”right” version with the buttons in
the bottom left corner (canonical resolution).

2.5 Canonical Conflicting Merge Resolutions

One way of programmatically resolving merge conflicts is by using the canonical resolution approach. The
produced CMR is denoted as canonical conflicting merge resolution (CCMR). Generating one CCMR
implies the generation of one canonical conflicting file resolution (CCFR) for each CF within the CM.
This means that there are

∏n
i=1 ki possible CCMRs, where ki is the number of resolutions for the i-th CF

and n is the number of CFs.

Assume that for conflicting file j there are mj conflicting chunks, then there are kj = 2mj CCFRs for
file j. This number comes from the fact that for each conflict there are two possible CCs one can choose
from. On a side note, in theory there are infinitely many CCMRs one can generate, since the two chunks
can be concatenated in infinitely many ways. To demonstrate, denote the first CC as CC1 and the second
one as CC2. The following concatenations can be created:

• No CC (empty)

• CC1 or CC2

• (CC1 or CC2) and (CC1 or CC2)

• (CC1 or CC2) and (CC1 or CC2) and (CC1 or CC2)

• (CC1| CC2)* (generalization as a regular expression)

We will only include canonical resolutions which either choose one or the other CC, i.e. CC1 or CC2.

CHAPTER 2. THEORY 11

Let K =
∑n

p=1 mp be the total number of conflicts in a merge, then by substitution, the number of
possible resolutions is given by:

n∏
i=1

ki =

n∏
i=1

2mi = 2
∑n

i=1 mi = 2K (2.1)

In the example from Section 2.3 there are two CCFRs for ”file-1.txt”, and therefore there are two
CCMRs. The CCFRs are shown in Figure 2.8.

Figure 2.8: Merge resolutions of the merge conflict of branch ”topic” and branch ”master”.

3
Related Work

This chapter includes other empirical studies to understand where our results lie within the existing
research. Further, we cover additional information about merges and merge conflict resolution, which aids
the discussion of the results in Chapter 7.

3.1 Empirical Studies based on Repository Analysis of Git

As mentioned in Chapter 1, little research about the human role in resolving merge conflicts exists. Ghiotto
et al. [12] conducted a detailed study on 2731 open-source Java projects with 25 328 CMs and 175 805
CCs. The study aimed to examine the structure of the merge conflicts and to gather insight into how
developers resolve them. Their focus lay on analyzing how single conflicting chunks are resolved and how
they depend on each other, if at all. They found that (i) 87 % of CCs were resolved with already existing
code from both of the CCs, (ii) 60 % of all conflicting merges had more than two CCs, and (iii) 29 % of
conflicting chunks depend on other chunks. Their analysis is based on extracting the line numbers of the
CCs and retrieving those lines from the actual conflicting file resolution (ACFR). They then performed a
line difference using an existing algorithm by Git and searched for lines of both CCs from the conflict. A
CC is marked as correct if there is no new code, meaning that the lines from the ACFR are entirely made
out of lines from the CCs. This approach should result in a lower correct rate than ours, which is the case,
as seen in Table 5.3 for the Java list. Their result showed that more than 75 %, or in their words, ”a full
three quarters” (Ghiotto et al. [12], p. 905), of CCs were resolved by picking one of the chunks, which is
the same metric used in this thesis, the correct rate for CCs for the Java list.

Leßenich et al. [17] posed seven hypotheses based on a survey on merge conflicts. The first hypothesis
suggests that active branches, determined by the number of commits, are more likely to result in conflicts
than inactive branches. However, they analyzed more than 21 thousand merge scenarios and concluded
that the number of commits does not strongly correlate with the number of merge conflicts and therefore
rejected their first hypothesis.

12

CHAPTER 3. RELATED WORK 13

Another study on the influence of different variables on the number of merge conflicts was conducted by
Menezes et al. [20]. They studied 182 273 merges from 80 projects written in eight different programming
languages and found that factors like the number of committers, the number of commits, and the number
of changed files of a branch have the biggest influence on the occurrence of merge conflicts. However, it is
important to note that these factors only concern one of the two branches involved in a merge conflict and
are, therefore, not directly comparable to our work.

3.2 Merge Conflict Resolution

Merge conflicts cannot always be avoided, so gathering information on what they affect and how is
important. Consider the following questions related to the merge conflict resolution process (Nelson et
al. [22], p. 2864):

1. ”How do developers approach and manage merge conflicts?”

2. ”How do developers perceive the difficulty of a merge conflict resolution?”

These questions are interesting because many studies explain the effects merge conflicts bring to the
software engineering process, but the developer was rarely in the spotlight. Their research found that
developers follow a sequence of five phases when resolving conflicts, as mentioned in Chapter 1. They
discovered that 56.18 % of the participants in their survey deferred at least once, meaning they did not deal
with the conflict immediately. The main reasons for this behavior were found to be the complexity of the
conflicting code and the number of CCs. Unsurprisingly, the most prominent factor in how developers
perceive difficulty of CMs is the complexity of the conflicting code. Furthermore, the expertise a developer
possesses in the field where the CC lies is the second most prominent difficulty factor. They also found
that the merge tools used to gather information about the conflicts and resolve them are perceived as
less effective when complexity increases. Brindescu et al. [6] determined that not only complexity but
also information gathering dramatically affects the difficulty of the resolution of CMs, meaning that the
information-gathering process is dependent on the complexity, and it also affects the perception of the
difficulty of the CMs.

3.3 Prevention of Merge Conflicts

Merge conflicts cannot always be prevented, but there are many attempts and approaches to how one could
reduce the number of conflicts.

3.3.1 Early Prevention

A way to prevent conflicts is to reduce the possibility of a conflict being able to form. Kasi et al. [16]
called this approach ”proactive conflict minimization”. They proposed and tested a tool that restricts
dependent tasks or tasks that share common files from being concurrently edited. In their experiment, they
successfully avoided the majority of conflicts.

CHAPTER 3. RELATED WORK 14

3.3.2 Merge Techniques

Still, with the reduction of conflicts in their early stage, there will always be conflicts. A promising fact,
supported by the studies listed below, is the existence of false-positive conflicts. Those are conflicts that
only form because the merge-algorithm could not correctly merge the branches and found conflicts where
none were necessary. The solution to this problem is to improve the merge techniques.

There are four kinds of merge techniques [21]: Textual, syntactic, semantic, or structural merge
techniques. In general, a merge technique tries to ”prevent” merge conflicts by minimizing their amount,
but some variations of the techniques also try to resolve existing conflicts.

The technique used by Git is the unstructured technique. Unstructured merges base comparison solely
on text, losing important syntactic information. In an environment using one particular programming
language and, therefore, syntax, unstructured merges may not be the best technique. The better approach
would be using a structured merge technique ([3], [14], [24], [25]), which considers the syntax of a given
language. By many accounts, such as Seibt et al. [23], structured merges show fewer merge conflicts
in a syntax-based environment than unstructured merges. The downside of the structured technique is
a performance deficit. Another method, the semi-structured approach ([1], [8], [2]), tries to balance
the performance of the unstructured approach and the improved precision of the structured approach.
Therefore this approach is less precise than structured merges, supported by Seibt et al. [23].

The semantic-based approach ([4], [5], [13], [28], [15]), tries to address conflicts that are preventable
but are not of syntactical nature. For example, it can detect and prevent conflicting renames of functions or
variables.

The last approach is the operation-based, or structural merge technique ([18], [19]), which uses the
fact that a VCS records every change in a project. A conflict can be resolved by replaying recordings of all
project operations in the form of transformations. Edwards [11] proposes different resolution strategies
concerning operation-based merge techniques. The strategy of interest is the so-called explosion strategy.
It calculates all possible paths of operations that lead to various resolutions. This approach has similarities
to the CCMR generation described in this thesis, see Section 4.2.1.

As one can see, many algorithms are trying to minimize merge conflicts as much as possible with
varying success, and they should be considered in the approach proposed in Chapter 1.

4
Methodology

Our data collection and analysis approach is presented in the sections below. First, the gathering of the
projects and then the extraction of the relevant data about the projects is described.

4.1 Data

As discussed in Section 2.4, a conflict can be resolved by either the canonical or the manual resolution.
This thesis analyzes human behavior in the case of merge conflicts, especially which of the two available
methods is chosen, see Section 2.4. For each level of granularity of conflict resolution, the number of times
a contributor chose one of the conflicting chunks is of interest. For the study, we used open-source projects
from GitHub. GitHub provides a network-based solution for the Git-based VCS software-engineering
process.

Electing projects was based on three criteria: Random projects with high popularity, random projects
with low popularity, and projects with high popularity featuring a specific programming language. The
popularity of a project is defined as the number of stars awarded to a project by GitHub users. Starring a
project is the same as adding a bookmark to the project to remember it.

4.2 Data Collection

The project collection process uses the GitHub API, which allows users to make search requests for
projects based on different criteria. For example, searches for language and name are explicitly searched
for, while one can obtain popular or unpopular projects by sorting the returned projects by the number of
stars in descending or ascending order.

First, we describe the random project selection. A random project can be obtained by searching for
a project by name, where the name is chosen randomly. The random name is generated by selecting a
random word from the Unix Words List1. The number of projects returned by each search request is limited
to 10 projects to further randomize the selection and prevent words strongly associated with software
engineering from affecting the selection bias. The projects obtained with this search are expected to be

1https://en.wikipedia.org/wiki/Words_(Unix)/ accessed on Nov 14, 2022

15

https://en.wikipedia.org/wiki/Words_(Unix)/

CHAPTER 4. METHODOLOGY 16

small in file size and commit count, which makes it possible to increase the number of projects to analyze.
For each criterion, random projects with high and low popularity, 2500 projects were selected with the
above method. How the popularity criterion was accounted for is explained above.

The search for the language-based criteria is simple. The language can be specified in the search
request, and the projects can be sorted by stars in descending order to ensure high popularity. Since the
popularity of these projects is high, the number of projects is reduced to 500 projects per language because
popular projects are expected to be bigger in file size and commit count. Six languages were selected
because they are the most used on GitHub based on the website GitHut2. Below are the chosen languages,
listed in descending order of usage:

1. Python3

2. Java4

3. C++5

4. Go6

5. JavaScript7

6. TypeScript8

The program used for the creation of the project lists is written in Python and is hosted on the GitLab
server of the University of Bern9. In addition, we developed a second program in Java, which was used to
clone the projects, find the conflicts, and analyze them. This program is also hosted on the GitLab server
of the University of Bern but in a different repository10.

The program first clones the project to obtain a local copy. All the merges of the projects up to the point
of cloning were then located and re-merged to find the conflicts. For conflicting merges with conflicting
chunk count smaller than or equal to 12, all CCMRs were generated. The reason we chose a limit of
12 CCs is explained in Section 6.1. Then each merge resolution was compared to the merge resolution
which was actually used in the existing project, denoted as actual conflicting merge resolution (ACMR).
Moreover, all canonical file resolutions were compared to the actual used file resolutions, denoted as
ACFRs, and the same process was applied to the chunk resolutions. For all the above comparisons, the
number of conflicting merges, files, or chunks and the number of times the canonical resolution is used in
the actual resolution or equal to the actual resolution is documented.

2https://madnight.github.io/githut/ accessed on Nov 14, 2022
3https://www.python.org/ accessed on Nov 14, 2022
4https://www.java.com/ accessed on Nov 14, 2022
5https://isocpp.org/ accessed on Nov 14, 2022
6https://go.dev/ accessed on Nov 14, 2022
7https://www.javascript.com/ accessed on Nov 14, 2022
8https://www.typescriptlang.org/ accessed on Nov 14, 2022
9https://gitlab.inf.unibe.ch/sb18n092/projectlistgenerator accessed Dec 13, 2022

10https://gitlab.inf.unibe.ch/SEG/theses/mergeconflictresolution, accessed Dec 13, 2022

https://madnight.github.io/githut/
https://www.python.org/
https://www.java.com/
https://isocpp.org/
https://go.dev/
https://www.javascript.com/
https://www.typescriptlang.org/
https://gitlab.inf.unibe.ch/sb18n092/projectlistgenerator
https://gitlab.inf.unibe.ch/SEG/theses/mergeconflictresolution

CHAPTER 4. METHODOLOGY 17

4.2.1 Generating Canonical Conflicting Merge Resolutions

The JGit11 API is a Git implementation in the Java programming language. JGit makes it possible to filter
out all the merges from all the commits of a repository and then re-merge the merge’s parent commits.
The re-merge produces a sequence of merge chunks as described in Section 2.2 and Section 2.3. One can
imagine this sequence as a tree-like structure where each merge chunk is a vertex, and a CC splits the
tree. After each such intersection, the edges of both CCs lead back to the next merge chunk or the next
chunks if they are conflicting. Let us call this tree the file-tree. For each CM, a tree can be generated as
well, the merge-tree, consisting of file-trees as vertices, see Figure 4.1. One CCMR, therefore, represents
one path in the merge-tree. This path can then be separated into multiple sub-paths, each corresponding to
one CCFR. The ACMR can be obtained by reading the Git repository and converting the resolution into a
comparable object.

Figure 4.1: Example of a merge-tree. On the left are the merge chunk sequences of two files, and on the
right is the merge-tree corresponding to the sequences. A green background represents a merge chunk
with changes, and a red border marks conflicting merge chunks.

With Gits’ diff-algorithm, the CCMR and the ACMR (ACFR for file granularity) can be compared.
If there are no differences, the compared resolutions are the same. Comparing two resolutions works
for merge and file granularity. However, the comparison is different for the chunks themselves. To still
compare at chunk granularity, the CCs are searched for in the ACFR.

11https://www.eclipse.org/jgit/ accessed on 14 Nov, 2022

https://www.eclipse.org/jgit/

CHAPTER 4. METHODOLOGY 18

If a CCMR or CCFR has no differences to the ACMR, or rather the ACFR or a CC is found in the
ACFR, the developer used the canonical resolution method. We then mark the CM, CF, or the conflict
belonging to the CCs as correct. The number of times a CM, CF, or conflict is marked as correct is denoted
as the correct count, ccorrect. The percentage of the correct count, out of the total number, ctotal, of analyzed
CMs, CFs or conflicts, is denoted as the correct rate, which is used to answer RQ1:

r =
ccorrect

ctotal
(4.1)

For a CMR to be correct, all its CFRs must be correct. But for a CFR to be correct, all its conflicts must be
marked as correct. This relationship manifests itself in the following equation:

rCM ≤ rCF ≤ rCC (4.2)

For consistency over the thesis, the rCC is used instead of rconflict. The latter notation would technically
be the correct one, but conflicts and conflicting chunks are mostly interchangeable terms since the CCs
belong to the conflict, and it is inferrable from context if the conflict or the actual chunks are referred to.

4.2.2 Metadata

Collecting projects’ metadata to answer RQ2 is also important. For each project, we collected the number
of commits and contributors. Since the relationships between commit count and conflict count and between
contributor count and conflict count are possibly very complex, we would like to see how the behavior is
in reality. We also collected the total number of merges, first and foremost for completeness of the data
and secondly for a qualitative comparison to the number of CMs.

5
Results

In this chapter, the results of the thesis are presented. The results related to the correct rate are shown
first, and the results regarding the metadata are second. The sections below give results for both research
questions because there are essential measurements for both questions in Section 5.1.

5.1 Correct Rate

The results for the canonical resolutions with the correct count, total count, and correct rate are listed
in this section. The results are structured identically for all three levels, merge, file, and chunks. The
Table 5.1 contains the results of the CMs, Table 5.2 the ones of the CFs, and Table 5.3 the CCs. The first
two columns of the last row labeled ”All Lists” represent the sum of the above values. The correct rate
was calculated the same way in every row, including the last row.

Table 5.1: Results for the merge granularity for all lists. Columns ccorrect, CM and ctotal, CM in the last row
are the sum of the above values.

List ccorrect, CM ctotal, CM rCM [%]

Python 3737 12 567 29.74
Java 5529 12 359 44.74
C++ 19 581 58 020 33.75
Go 3495 10 419 33.54
JavaScript 1615 5071 31.85
Typescript 6281 19 749 31.80
Random Name Desc. 534 1353 39.47
Random Name Asc. 90 256 35.16

All Lists 40 862 119 794 34.11

19

CHAPTER 5. RESULTS 20

Table 5.2: Results for the file granularity for all lists. Columns ccorrect, CF and ctotal, CF in the last row are the
sum of the above values.

List ccorrect, CF ctotal, CF rCF [%]

Python 9278 21 432 43.29
Java 12 610 22 267 56.63
C++ 49 867 109 204 45.66
Go 8029 17 642 45.51
JavaScript 4179 8924 46.83
Typescript 15 642 35 789 43.71
Random Name Desc. 1022 2100 48.67
Random Name Asc. 151 354 42.66

All Lists 100 778 217 712 46.29

Table 5.3: Results for the merge granularity for all lists. Columns ccorrect, CC and ctotal, CC in the last row are
the sum of the above values.

List ccorrect, CC ctotal, CC rCC [%]

Python 23 412 29 316 79.86
Java 25 462 29 965 84.97
C++ 119 910 148 035 81.00
Go 19 279 24 182 79.72
JavaScript 9725 12 075 80.54
Typescript 38 655 49 893 77.48
Random Name Desc. 2656 3119 85.16
Random Name Asc. 459 541 84.84

All Lists 239 558 297 126 80.63

First, look at the overall result for each level of granularity. The increase of the correct rate from
granularity level to granularity level is expected because of the relation in equation (4.2). The one
granularity which stands out is the chunk granularity at a correct rate of 80.63 %. Compared to the increase
from rAll Lists, CM to rAll Lists, CF, the increase from rAll Lists, CF to rAll Lists, CC is larger by 22.16%. This
difference in increase manifests itself in a relatively small percentage of conflicts (CCs), namely 19.37 %,
causing 65.89 % of all CMs not being resolvable by a CCMR.

Java produced the highest correct rates, with 44.74 % for the merge granularity and 56.63 % for the
file granularity. Both of those values are around 10 % higher than the total correct rate. For the chunk
granularity, Java’s correct rate stands out less than for the other granularities, but it is still one of the highest
values. Similar results are found for the random name with descending popularity list. The difference is

CHAPTER 5. RESULTS 21

that its correct rate is not quite as high as the one for the Java list. For the merge granularity, the ”Random
Name Desc.” list’s correct rate stands at 39.47 %, and for the file granularity, it stands at 48.67 %. Other
than Java and ”Random Name Desc.”, the lists are within a 4.50 % interval around the correct rate of all
lists, which holds for all granularities.

Now consider the correct counts over every project, disregarding the list separation. In Figure 5.1
and Figure 5.2, there are two plots for each granularity, visualizing the conflicting merges, files, and
chunks count against the conflicting merges, files, and chunks correct count. The first (left) plot has
linear scaling to show the true scaling of the data, and the second (right) plot shows all the data but with
double-logarithmic scaling. The data includes all projects from every list.

The regression equations in Figure 5.1 and Figure 5.2 confirm the above results from Table 5.1,
Table 5.2 and Table 5.3. The interesting piece of information represented in the plots, which is not visible
otherwise, is that for the merge and file granularity, the data is much more scattered than for the chunk
granularity. Some projects with a high CM count or CF count have a relatively low correct count, but those
outlier projects are no longer outliers for the chunk granularity.

Figure 5.1: Correct count of the merge granularity in relation to the total count over all the projects for
each granularity. Both plots contain the same data but over different scales for each granularity. The left
plot is constricted to data around the source, whilst the right plot has a double logarithmic scale over all
the data.

CHAPTER 5. RESULTS 22

Figure 5.2: Correct count in relation to the total count over all the projects for each granularity. Both
plots contain the same data but over different scales for each granularity. The left plot is constricted to
data around the source, whilst the right plot has a double logarithmic scale over all the data. From top to
bottom: File and chunk granularity.

Lastly, we give the correct rates of CMs and CFs for different conflict counts. Each CM, resp. CF
was categorized by its conflict count. For each of the conflict counts i = 1, . . . , 12, the total amount,
ctotal, gran., i, of each granularity (gran.) belonging to the conflict count gets calculated as well as the amount
of correct count for each granularity, ccorrect, gran., i, of the conflict count. With these values, the correct rate
rgran., i for each conflict count i could be calculated. The results are listed in Table 5.4 and visualized in
Figure 5.3. One can see that for the CMs, the correct rate and the total count decrease with increasing
conflict count, up to six CCs. The CFs behave similarly with the difference that the correct rate increases
visibly again at seven CCs. In both plots, there is an anomaly at 11 CCs, but the general shapes of the bar
graphs point to the previous conclusions.

CHAPTER 5. RESULTS 23

Table 5.4: Correct and total counts as well as correct rates for all CMs and CFs over all projects categorized
by CC count of each CM or CF. The subscript i denotes the CC count. For example: The total count for
CFs with i = 11 CC count is ctotal, CF, 11 = 151.

Conflicting
Chunks Count ccorrect, CM, i ctotal, CM, i rCM, i [%] ccorrect, CF, i ctotal, CF, i rCF, i [%]

1 24 536 60 515 40.55 88 173 175 243 50.31
2 7763 23 319 33.29 8269 25 598 32.30
3 3122 11 376 27.44 2348 8393 27.98
4 1832 7113 25.76 982 3770 26.05
5 1109 4732 23.44 417 1927 21.64
6 675 3356 20.11 229 1082 21.16
7 495 2498 19.82 118 615 19.19
8 388 1990 19.50 90 432 20.83
9 341 1646 20.72 62 265 23.40
10 244 1277 19.11 41 169 24.26
11 161 1057 15.23 27 151 17.88
12 196 915 21.42 22 67 32.84

Figure 5.3: Correct rate of CMs and CFs by number of conflicts / CCs.

5.2 Metadata

The metadata was collected for every project in a project list as described in Section 4.2.2. The metadata
in Table 5.5 has been summarized for each list by summation over each project in a list. Some data points
stand out: C++ has the highest commit and merge count. Also, there is a noticeable difference between
JavaScript and TypeScript, even though TypeScript is based on JavaScript. As expected, the random name
lists have much fewer contributors, commits, and merges.

CHAPTER 5. RESULTS 24

Table 5.5: Metadata of the lists. In this table, the last row is the sum of the above values.

List Contributors Commits Merges
Analyzed CMs

(ctotal, CM)

Python 58 553 1 085 693 191 741 13 509
Java 34 977 1 136 621 247 719 13 934
C++ 119 127 4 206 996 685 559 64 370
Go 120 753 1 977 436 414 242 11 411
JavaScript 16 584 286 345 55 632 5636
Typescript 128 301 1 920 250 263 727 23 368
Random Name Desc. 6594 136 748 18 435 1617
Random Name Asc. 3977 35 552 2650 302

All Lists 488 866 10 785 641 1 879 705 134 147

We analyzed correlations of various metadata metrics to the CM count. First, the correlation between
the CM count and commit count, and then the correlation between CM count and contributor count was
calculated. The calculated value is the Pearson correlation coefficient1. The correlation between the
commit count and the CM count is 0.52, and the correlation between the contributor count and the CM
count is 0.20. The cause-and-effect relationships between the CM count and the commit count and CM
count and contributors are shown in Figure 5.4. The linear regressions used to approximate the relationships
roughly suggest that in 100 commits, there will be approximately two CMs, and for every additional 10
contributors, there will be approximately 1.5 CMs more. Notice that this is a rough approximation. It is
solely used to introduce an understanding of how strong the effect of commit count and contributor count
on CM count is.

Figure 5.4: Influence of commit count and contributor count on CM count. Both plots have a double
logarithmic scale to accommodate all data points. Every project, over every list, is included.

1https://en.wikipedia.org/wiki/Pearson_correlation_coefficient accessed Dec 1, 2022

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

6
Threats to Validity

We address threats to internal, external and construct validity in this chapter. We chose the classification of
threats to validity according to Wohlin [26],[27], which is typical for software engineering literature.

6.1 Internal Validity

We did not study projects containing conflicts with very big files to maintain a time- and memory-efficient
analysis with a high CM count. Suppose there are conflicting chunks in big files, the duration for comparing
merge resolutions increases. Some files, e.g., ”package-lock.json” of some JavaScript projects managed by
NPM1, have lots of conflicting chunks in the same file while having sizes in the range of a few megabytes.
These files lead to a significant increase in time for comparisons and heap-memory consumption. Projects
which have conflicts with such files were removed and replaced by similar projects without conflicts in
very big files. The project was moved from the project list to a project blacklist, and the reduced project list
was replenished with a new project by running the same election process but keeping the already elected
ones and not accepting the projects on the blacklist. Of all the 8500 projects, there were only 15 such
occurrences, and since such problems can occur in every project, no matter the number of commits of a
project or what language the project was in, we deem their impact on the selection bias to be small.

There is also the possibility that projects are empty (no commit has been made yet) or contributors
emptied projects from GitHub in the time frame from gathering projects to the cloning process, which
was, at most, a few hours. This may transpire more often for projects with low popularity, i.e., both lists of
random projects, but this occurred only once for projects with high popularity. All those projects were
ignored but not replaced because this only affected one project of the Go list, 332 projects of the ”Random
Name Desc.” list, and 343 projects of the ”Random Name Asc.” list. This issue was accounted for by
enlarging the random project lists.

Git does also not prevent contributors from editing the history, meaning that branches or commits may
be altered or deleted. Since altering or deleting a commit is time-consuming and pointless most of the
time, since a mistake in the past can mostly be fixed in the present, we can assume that these actions are
rare. Furthermore, there is no reason why an altered or deleted commit should be different from any of the

1https://www.npmjs.com/ accessed on Nov 15, 2022

25

https://www.npmjs.com/

CHAPTER 6. THREATS TO VALIDITY 26

Figure 6.1: Number of merges with certain conflicting chunks count. The plot contains every conflicting
merge overall project lists. The line at 12 conflicting chunks marks the cutoff of all the analyzed merges:
To the left of the line are the merges which were analyzed. For better readability, this is not a bar graph,
but a curve, even though the values are discrete.

other commits, meaning that if one such commit is present in the data, it does not affect the selection bias.
For the case when a conflicting merge would have included a deleted branch, one would not be able to
check this CM since one of the parent commits would be missing. Our tool would have noticed the missing
branch and marked this specific CM as a fail. The analysis, however, showed that this never occurred. The
last case, altering a branch, has no impact since the commits necessary for the re-merge still exist.

There are other limitations as well. The number of possible merge resolutions grows exponentially,
see equation (2.1). For example a CM with 10 CFs where each CF has 30 CCs, the amount of possible
canonical resolutions is given by

∏10
i=1 2

30 = 2300. Given this structure of a CM, our tool would need
to make approximately 233 comparisons of relatively large data structures, which is infeasible to do in
a reasonable amount of time. The way to avoid these merges with many conflicts is to limit the number
of possible paths in the merge-tree. In this thesis, the limit was set to 212 = 4096, which means that
conflicting merges with more than 12 CCs are discounted from further analysis. Out of the 130 619 CMs
in this thesis, not counting the CMs containing binary files (see Section 6.3), only 10 825 or 8.29 % have
more than 12 CCs, see Figure 6.1. For further data about the number of ignored merges, see Table 6.1.

Human intervention in a merge conflict makes comparing merge chunks non-trivial. The problem lies
in finding the location of a conflicting chunk in the actual resolution file. Consider the following example:
A conflicting file was resolved by picking one of the conflicting chunks, but the contributor makes a new
change while merging, a change in the same file that has nothing to do with conflicts. The reason for the
change could be a bug discovered while merging. One can quickly determine that the actual resolution

CHAPTER 6. THREATS TO VALIDITY 27

file will never match a canonical file resolution, but there is no way of determining where precisely the
conflicting chunks are located in the actual resolution file because the change may have shifted the location
of the chunks. This means that the conflicting chunks may be at different locations than the merge results
suggest. This poses the problem that there is no definitive way to tell if the chunk in the actual resolution
is actually the one we are trying to find. A workaround solution was described in Section 4.2, where the
CCs are searched for in the ACFR. This approach causes a different problem: There is the possibility
that a copy of a conflicting chunk is present in a conflicting file but in a different location than the actual
conflicting chunk. This means that the conflicting chunk could be found even though the conflicting chunk
is not even used in the actual resolution file. There are other similar problems. Our approach will increase
the correct rate of the CCs, but the change is not quantifiable. Other research like Ghiotto et al. [12] faced
the same problem and solved it with a different method, leading to a lower correct rate, differing by about
10 % to our result for Java projects. They also mention that their results may not hold for studies with a
larger sample size which is the case for this thesis. Because of this, we assume that the results gathered
from our analysis concerning the correct rates of CCs are plausible values.

Our code may be buggy, resulting in wrong measurements. However, we regularly analyzed samples
manually as well as wrote unit tests on a prefabricated project from which the conflicts were known to
ensure correctness.

6.2 External Validity

As we studied GitHub projects of six programming languages, our results may not apply to projects
outside of GitHub or from other programming languages. However, we found that the deviation between
the programming languages we studied was small, which indicates that similar results will be found for
projects in other languages. The same can be said for random projects with ascending and descending
popularity. Moreover, GitHub is the major online repository today. Since GitHub is an open-source project,
the projects we studied are diverse in popularity and project size. As the results were very similar, even for
these diverse projects, we are confident that projects hosted differently (not on GitHub) would measure
similar to ours. All in all, the results of RQ2 give an indication for external validity, see the discussion for
RQ2.

6.3 Construct Validity

As mentioned, Git supports different merge algorithms using different merge-strategies. Our analysis
focuses on the three-way merge with the default merge strategy, ORT2, of Git. ORT is based on a recursive
strategy and merges two branches. The three-way merge is the default algorithm for Git and is used in
most cases. In our analysis, we found 4881 octopus merges or 0.26 % in 1 879 705 merges. Restricting
our analysis to one single merge-strategy may cause some commits to be identified as false-positive or

2https://git-scm.com/docs/merge-strategies#Documentation/merge-strategies.txt-ort/
accessed Nov 22, 2022

https://git-scm.com/docs/merge-strategies#Documentation/merge-strategies.txt-ort/

CHAPTER 6. THREATS TO VALIDITY 28

false-negative merges if developers used a different merge strategy. According to the documentation of the
ORT merge strategy2 of Git, the ORT strategy ”reported to result in fewer merge conflicts without causing
mismerges by tests done on actual merge commits taken from Linux 2.6 kernel development history”. We
argue that most developers use the ORT merge strategy of Git, and thus the percentage of non-recursive
merges is negligibly small.

Also ignored are merges containing binary files, of which we detected 3528 or 2.63 % out of 134 147
eligible CMs. Although Gits’ merge-algorithm can detect conflicts in binary files, a human cannot resolve
such conflicts because binary files do not contain human-readable UTF-8-encoded3 text. Therefore it is
pointless to analyze merges containing conflicts in binary files. The total amount of ignored CMs can be
found in Table 6.1.

Table 6.1: Data of ignored CMs of the lists. In this table, the last row is the sum of the above values.

List Total
CMs

Analyzed CMs
(ctotal, CM)

Ignored
CMs

Ignored CMs
(Binary Files)

Ignored CMs
(Max. CC count)

Python 13 509 12 567 942 164 778
Java 13 934 12 359 1575 142 1433
C++ 64 370 58 020 6350 1348 5002
Go 11 411 10 419 992 132 860
JavaScript 5636 5071 565 73 492
Typescript 23 368 19 749 3619 1442 2177
Random Name Desc. 1617 1353 264 191 73
Random Name Asc. 302 256 46 36 10

All Lists 134 147 119 794 14 353 3528 10 825

Since resolving conflicts is difficult [6], developers will eventually make mistakes when resolving
merge conflicts. However, our analysis assumes that the ACMRs are mistake-free. The reason for this
assumption is that the ACMRs created by the developers are the only resolutions available, and checking a
resolution for correctness is also not possible since total correctness of a program is undecidable because
of the undecidability of the halting problem4.

3https://de.wikipedia.org/wiki/UTF-8/, accessed Dec 21, 2022
4https://en.wikipedia.org/wiki/Halting_problem accessed Dec 15, 2022

https://de.wikipedia.org/wiki/UTF-8/
https://en.wikipedia.org/wiki/Halting_problem

7
Discussion

7.1 Summary of Key Findings

The results found in Chapter 5 are the following: We found that the correct rate for CMs, with 34.11 %, is
much lower than the one for the CCs, with 80.63 %. Only 19.37 % of all conflicts cause 65.89 % of all
CMs not being resolvable by a CCMR. Further, Java has the highest CM and CF correct rate and is in the
top three for the CC correct rate. The correct rates categorized by CC count are similar for both CMs and
CFs. The correct rate for a low CC count is high but decreases again with a higher CC count up to around
six or seven CCs and then increases again. For the CMs, the increase is very slight as to the CFs, where the
growth is much more noticeable. For the correlation between different measures of project metadata and
CM count, it was found that the commit count correlates moderately strongly, and the contributor count
correlates weakly.

RQ1: How often do humans intervene in merge conflict resolution for
a VCS such as Git?

Based on the correct rate of the CMs, one of three CM is resolvable by a CCMR. Opposed to the correct
rate for the CCs, the involvement of humans in CMs is much stronger. About eight out of ten CCs are
resolved by the canonical approach. We could only compare the correct rate for CCs for Java projects with
prior work. As mentioned in Section 3.1, Ghiotto et al. [12] found that the correct rate for CCs for the
Java list is more than 75 %. Our measured value is 84.97 %. It is difficult to say which of the two values
more accurately displays the true value because both methods need to compromise to compare the CCs to
the ACFR, but since their results match with the expected lower value and ours with the expected higher
value, it is reasonable to assume that both values circle an average and are plausible. In turn, this means
that values for the other project lists are also plausible regarding our method.

Based on the research of Brindescu et al. [6], the complexity and difficulty of resolving a CMs can
quickly increase with the size of the CM, i.e., the lines of code involved in the CM or the number of CCs.
This is because the information needed to resolve a CM is not easily obtainable. With an increasing CC
count, the information-gathering process will be even more difficult, especially if the different CCs of the

29

CHAPTER 7. DISCUSSION 30

CM are related to each other, meaning that the resolution of one CC affects the resolutions of the other
CCs. Obviously, no relations can form for single conflicts, but more such relationships will appear with
increasing CCs count. Ghiotto et al. [12] found that 29 % of all CMs have dependencies among their CCs.
Our results point in the direction that most of the CCs are simple to resolve since the CC correct rate is so
high. This implies that most conflicts are unrelated, meaning that the information needed to resolve one
conflict is confined to this one conflict. But if two conflicts are related, resolving them is difficult because
the amount of required information grows rapidly. Again Ghiotto et al. [12] concluded that for 87 % of
CCs, all the code, or information, to resolve a conflict is found within the two CCs, which aligns with the
above statement.

There seems to be a limit of human involvement at around six or seven CCs for both CMs and CFs.
This limit could be the result of developers being less willing to gather the necessary information to resolve
CMs or CFs with a higher conflict count. Another possible explanation for this effect could be that the
contributors get overwhelmed by the amount of CCs, do not know how to resolve them even with the
necessary information, and resort back to the canonical approach. It is important to mention that the above
reasoning is speculative and should be researched further.

Regardless of the reason, we can conclude that the rate at which humans intervene in CMs depends on
the number of conflicts in the corresponding CM. For fewer conflicts, the involvement is weak, becomes
stronger up to six or seven CCs, and weakens again with increasing CC count up to the analyzed conflict
count of 12. Because of the reasoning above, intuitively, it would make sense that the correct rate would
either stay the same or grow slowly for a higher conflict count, but this would need to be researched
further. Nevertheless, intervention in single conflicts is less common, whilst for CMs and CFs, it becomes
more common, meaning that a small percentage of CCs cause a big part of the CMs and CFs not being
resolvable by CCMRs, resp. CCFRs.

RQ2: What factors influence the number of merge conflicts and their
resolutions in a Git project?

There is no substantial difference in involvement when considering language or popularity of projects
for all three granularities. The only somewhat notable values are the correct rates for Java. Java has the
highest correct rate for CMs and CFs, and its correct rate for CCs is in the top three. Since Java has similar
statistics, i.e., CMs count, commit count, etc., to other languages researched in this thesis, it can only be
assumed that this value came about by statistical chance.

In our research, we considered commit count and contributor count, which could influence the conflict
count of projects. We found that the correlation between contributor count and CM count is weak, with
a value of 0.2. To gain perspective, Leßenich et al. [17] found as an additional result of their study
that there is almost no correlation between contributor count and CM count. It is important to mention
that Leßenichs study is much less extensive, analyzing only 163 open-source projects, of which the

CHAPTER 7. DISCUSSION 31

maximum contributor count is 497. But still, the correlation is nowhere near expressive enough to conclude
meaningful implications on the CM count. The number of contributors of a project is more likely to be an
indicator of the project’s size rather than the number of CMs. This is shown in Table 5.5, as, in general, a
higher contributor count yields a higher commit count.

The correlation between commit count and CM count is stronger, as we found it to be 0.52. Again
Leßenich et al. [17] rejected their first hypothesis, suggesting commit count as an indicator with predictive
power for the number of conflicts. The correlation between commit count and conflict count was found to
be 0.16. This value is not directly comparable to our result, but it indicates that commit count only slightly
affects conflict count or, in our case, CM count.

To summarize, the commit count has a moderate influence on the CMs count: About two CMs in 100
commits are found. On the other hand, the contributor count only has a weak correlation to the CMs count.

7.2 Implications

There is much research on merge conflict indication, prevention, recognition, and characteristics, see
Chapter 3. However, little has been studied on the topic of the involvement of humans in merge conflict
resolution. As of now, we found no research as detailed and extensive as ours. As mentioned in the answer
for RQ1, our results for the correct rate of Java projects support the existing research of Ghiotto et al. [12].
As for the correlation between commit count and CM count and contributor count and CM count, our
results also support the research conducted by Leßenich et al. [17], see the answer for RQ2.

The results not mentioned in the above paragraph represent new insights into merge conflict resolution
and the human role. As discussed, the number of CCs in a CM strongly affects the decisions of a developer
resolving a CM, and a relatively small percentage of CCs cause a high percentage of CMs not being
resolvable by a CCMR. Consider the resolution approach proposed in Chapter 1. The approach would not
be efficient based on our results. Aside from only one out of three CMs being resolvable by a CCMR, there
will be other problems associated with the approach, like performance issues, because for every CM the
program needs to be compiled and sometimes tested. One could consider new factors, adapt the approach
to more closely evaluate the conflict, and base the evaluation of CCMRs suggested to the developer on
them. One such factor may be the number of CCs.

7.3 Recommendations

Further research needs to be conducted on the small incorrect percentage of CCs. Reducing this percentage
would strongly affect the growth of the correct rate for the CMs. Therefore finding the reasons for failure
of the 19.37 % of conflicts is essential. If those reasons are minuscule, i.e., syntactical conflicts, they can
be redeemed with little effort. Many approaches have already been proposed, serving the prevention of
CMs based on syntax and semantics.

CHAPTER 7. DISCUSSION 32

A way to improve the efficiency of the mentioned approach in Chapter 1 would be to treat conflicts in
groups based on their relation to one another. Related conflicts could be treated as one, i.e., the resolutions
that do not fit together could be filtered out. This would reduce the number of paths, as in Section 4.2.1,
and therefore efficiency. The difficulty with this is twofold: First, one would need to detect related conflicts,
and second, the incompatible resolutions need to be filtered somehow. With current knowledge, it is
difficult to say if the reduction in paths would result in a beneficial, if at all, overall improvement of
performance since additional steps would need to be implemented. However, if the path count would grow
linearly and not exponentially, it would be worth taking a shot.

Since, in this thesis, the maximum CCs count is set to 12, it would be interesting to see if the trend of
the increasing correct rate with increasing CC count still holds for more conflicts. Additionally, the reason
for the increasing correct rate for the increasing conflict count could be researched further.

As there was also the argument that related conflicts could play a role in the resolution process, it
would also be interesting to see how the related and unrelated conflicts are resolved individually and the
differences between the two. Further, it would be interesting to see if there are additional factors like
the degree of the relation of the conflicts that affect their resolution, i.e., the developers’ decisions while
resolving the conflicts.

8
Conclusion and Future Work

To assess the feasibility of the approach proposed in Chapter 1, we analyzed 119 794 CMs of 8500 open
source projects from GitHub, each CM containing up to twelve conflicts. All CMs contain 217 712 CFs
and 297 126 CCs in total, all included in the analysis process.

We concluded, based on the results of our analysis in Chapter 5, and the discussion of the aforementioned
results in Chapter 7, that the approach proposed in Chapter 1 would not be very useful as it is. Because
other difficulties like performance cannot be disregarded, the correct rate for CMs of 34.11 % is considered
to be too low. By including other merge techniques (Section 3.3.2), which reduce the false-positive rate,
or by treating related conflicts as one, reducing the path count of the merge-tree, the performance of the
approach could be improved. But even if an algorithm with perfect performance would exist, it will always
be limited by bottlenecks like the rate at which tests can be performed. Nevertheless, the correct rate for
CCs is very interesting in that it is very high compared to the CMs or CFs. If this rate could be improved
even further, it would also drastically impact the correct rate for the CMs. Regardless, improving the
correct rate for CMs is vital for future studies.

No matter the somewhat sobering realization that the approach is not feasible, the results of this
extensive study bring new, interesting insights into the human role in the merge resolution process.

33

List of Figures

2.1 Merge example from the official Git merge description with two branches, ”topic” and
”master”. Branch ”topic” at commit C is merged into ”master” at commit G producing the
merged commit H. 4

2.2 Example file contents of the merge shown in Figure 2.1. Files with a green backgrounds
contain changes. The, for this merge, irrelevant commits, A, B, D, and F are not included
in this figure. 5

2.3 Chunk sequences produced by the merge-algorithm containing one conflict. Chunks with
a green background contain changes (in this case modifications). The top four sequences
are the unmerged sequences of the files and in the middle are the combined sequences. On
the bottom are the merged sequences. 6

2.4 Composition visualization of a CM, CF and CCs. There are n CFs within the CM and mi

merge conflicts within the i-th CF. 7
2.5 Example file contents of the merge shown in Figure 2.1. Files with a green background

contain changes. The two files with red borders have conflicting changes. The, for this
merge, irrelevant commits, A, B, D, and F are not included in this figure. 8

2.6 Chunk sequences produced by the merge-algorithm containing one conflict. Chunks
with a green background contain changes and chunks with a red border mark conflicting
chunks. Here ”file-1.txt” contains conflicting merge chunks. The top four sequences are
the unmerged sequences of the files and in the middle are the combined sequences. On the
bottom are the (partially) merged sequences. 8

2.7 A screenshot of the merge conflict resolution dialogue of the IntelliJ IDEA. On the left is
the ”HEAD” branch, in the middle a live preview of the merged file, and on the right is the
other branch. One can edit the files directly (manual reolution) or can accept the ”left” or
”right” version with the buttons in the bottom left corner (canonical resolution). 10

2.8 Merge resolutions of the merge conflict of branch ”topic” and branch ”master”. 11

4.1 Example of a merge-tree. On the left are the merge chunk sequences of two files, and on
the right is the merge-tree corresponding to the sequences. A green background represents
a merge chunk with changes, and a red border marks conflicting merge chunks. 17

5.1 Correct count of the merge granularity in relation to the total count over all the projects
for each granularity. Both plots contain the same data but over different scales for each
granularity. The left plot is constricted to data around the source, whilst the right plot has
a double logarithmic scale over all the data. 21

34

LIST OF FIGURES 35

5.2 Correct count in relation to the total count over all the projects for each granularity. Both
plots contain the same data but over different scales for each granularity. The left plot is
constricted to data around the source, whilst the right plot has a double logarithmic scale
over all the data. From top to bottom: File and chunk granularity. 22

5.3 Correct rate of CMs and CFs by number of conflicts / CCs. 23
5.4 Influence of commit count and contributor count on CM count. Both plots have a double

logarithmic scale to accommodate all data points. Every project, over every list, is included. 24

6.1 Number of merges with certain conflicting chunks count. The plot contains every
conflicting merge overall project lists. The line at 12 conflicting chunks marks the cutoff
of all the analyzed merges: To the left of the line are the merges which were analyzed. For
better readability, this is not a bar graph, but a curve, even though the values are discrete. 26

List of Tables

5.1 Results for the merge granularity for all lists. Columns ccorrect, CM and ctotal, CM in the last
row are the sum of the above values. 19

5.2 Results for the file granularity for all lists. Columns ccorrect, CF and ctotal, CF in the last row
are the sum of the above values. 20

5.3 Results for the merge granularity for all lists. Columns ccorrect, CC and ctotal, CC in the last
row are the sum of the above values. 20

5.4 Correct and total counts as well as correct rates for all CMs and CFs over all projects
categorized by CC count of each CM or CF. The subscript i denotes the CC count. For
example: The total count for CFs with i = 11 CC count is ctotal, CF, 11 = 151. 23

5.5 Metadata of the lists. In this table, the last row is the sum of the above values. 24

6.1 Data of ignored CMs of the lists. In this table, the last row is the sum of the above values. 28

36

Glossary

ACFR actual conflicting file resolution. 12, 16, 17, 18, 27, 29

ACMR actual conflicting merge resolution. 16, 17, 18, 28

CC conflicting chunk. 7, 9, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36

CCFR canonical conflicting file resolution. 10, 11, 17, 18, 30

CCMR canonical conflicting merge resolution. 10, 11, 14, 16, 17, 18, 20, 29, 30, 31

CCR conflicting chunk resolution. 9

CF conflicting file. 7, 9, 10, 18, 19, 21, 22, 23, 26, 29, 30, 33, 34, 35, 36

CFR conflicting file resolution. 9, 18

CM conflicting merge. 7, 9, 10, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36

CMR conflicting merge resolution. 9, 10, 18

IDE integrated development environment. 9

VCS version control system. i, 1, 2, 3, 4, 15, 29

37

Bibliography

[1] S. Apel, O. Leßenich, and C. Lengauer. Structured merge with auto-tuning: balancing precision
and performance. In Proceedings of the 27th IEEE/ACM International Conference on Automated

Software Engineering - ASE 2012, New York, New York, USA, 2012. ACM Press.

[2] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner. Semistructured merge. In Proceedings of

the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software

engineering - SIGSOFT/FSE ’11, New York, New York, USA, 2011. ACM Press.

[3] T. Apiwattanapong, A. Orso, and M. J. Harrold. JDiff: A differencing technique and tool for
object-oriented programs. Autom. Softw. Eng., 14(1):3–36, Mar. 2007.

[4] V. Berzins. Software merge. ACM Trans. Program. Lang. Syst., 16(6):1875–1903, Nov. 1994.

[5] D. Binkley, S. Horwitz, and T. Reps. Program integration for languages with procedure calls. ACM

Trans. Softw. Eng. Methodol., 4(1):3–35, Jan. 1995.

[6] C. Brindescu, Y. Ramirez, A. Sarma, and C. Jensen. Lifting the curtain on merge conflict resolution:
A sensemaking perspective. In 2020 IEEE International Conference on Software Maintenance and

Evolution (ICSME). IEEE, Sept. 2020.

[7] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Proactive detection of collaboration conflicts. In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations

of software engineering - SIGSOFT/FSE ’11, New York, New York, USA, 2011. ACM Press.

[8] G. Cavalcanti, P. Borba, and P. Accioly. Evaluating and improving semistructured merge. Proc. ACM

Program. Lang., 1(OOPSLA):1–27, Oct. 2017.

[9] S. Chacon and B. Straub. Pro git. Apress, Elk Grove, CA, 2 edition, Jan. 2014.

[10] P. M. Duvall, S. Matyas, and A. Glover. Continuous integration. Addison-Wesley Educational,
Boston, MA, June 2007.

[11] W. K. Edwards. Flexible conflict detection and management in collaborative applications. In
Proceedings of the 10th annual ACM symposium on User interface software and technology - UIST

’97, New York, New York, USA, 1997. ACM Press.

[12] G. Ghiotto, L. Murta, M. Barros, and A. van der Hoek. On the nature of merge conflicts: A study
of 2,731 open source java projects hosted by GitHub. IEEE trans. softw. eng., 46(8):892–915, Aug.
2020.

38

BIBLIOGRAPHY 39

[13] S. Horwitz, J. Prins, and T. Reps. Integrating noninterfering versions of programs. ACM Trans.

Program. Lang. Syst., 11(3):345–387, July 1989.

[14] J. J. Hunt and W. F. Tichy. Extensible language-aware merging. In International Conference on

Software Maintenance, 2002. Proceedings. IEEE Comput. Soc, 2003.

[15] Jackson and Ladd. Semantic diff: a tool for summarizing the effects of modifications. In Proceedings

International Conference on Software Maintenance ICSM-94. IEEE Comput. Soc. Press, 1994.

[16] B. K. Kasi and A. Sarma. Cassandra: Proactive conflict minimization through optimized task
scheduling. In 2013 35th International Conference on Software Engineering (ICSE). IEEE, May
2013.

[17] O. Leßenich, J. Siegmund, S. Apel, C. Kästner, and C. Hunsen. Indicators for merge conflicts in the
wild: survey and empirical study. Autom. Softw. Eng., 25(2):279–313, June 2018.

[18] E. Lippe and N. van Oosterom. Operation-based merging. In Proceedings of the fifth ACM SIGSOFT

symposium on Software development environments - SDE 5, New York, New York, USA, 1992. ACM
Press.

[19] E. Lippe and N. van Oosterom. Operation-based merging. Softw. Eng. Notes, 17(5):78–87, Nov.
1992.

[20] J. W. Menezes, B. Trindade, J. F. Pimentel, T. Moura, A. Plastino, L. Murta, and C. Costa. What
causes merge conflicts? In Proceedings of the XXXIV Brazilian Symposium on Software Engineering,
New York, NY, USA, Oct. 2020. ACM.

[21] T. Mens. A state-of-the-art survey on software merging. IEEE trans. softw. eng., 28(5):449–462,
May 2002.

[22] N. Nelson, C. Brindescu, S. McKee, A. Sarma, and D. Dig. The life-cycle of merge conflicts:
processes, barriers, and strategies. Empir. Softw. Eng., 24(5):2863–2906, Oct. 2019.

[23] G. Seibt, F. Heck, G. Cavalcanti, P. Borba, and S. Apel. Leveraging structure in software merge: An
empirical study. IEEE trans. softw. eng., 48(11):4590–4610, Nov. 2022.

[24] H. Shen and C. Sun. A complete textual merging algorithm for software con .guration management
systems. In Proceedings of the 28th Annual International Computer Software and Applications

Conference, 2004. COMPSAC 2004. IEEE, 2004.

[25] H. Shen and C. Sun. Syntax-based reconciliation for asynchronous collaborative writing. In 2005

International Conference on Collaborative Computing: Networking, Applications and Worksharing.
IEEE, 2006.

[26] C. Wohlin, M. Höst, and K. Henningsson. Empirical research methods in software engineering. In
Empirical Methods and Studies in Software Engineering, Lecture notes in computer science, pages
7–23. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

BIBLIOGRAPHY 40

[27] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. Experimentation in

software engineering. Springer, Berlin, Germany, 2012 edition, June 2012.

[28] W. Yang, S. Horwitz, and T. Reps. A program integration algorithm that accommodates semantics-
preserving transformations. ACM Trans. Softw. Eng. Methodol., 1(3):310–354, July 1992.

[29] N. N. Zolkifli, A. Ngah, and A. Deraman. Version control system: A review. Procedia Comput. Sci.,
135:408–415, 2018.

	Introduction
	Theory
	Version Control System
	Merging
	Merge Output

	Merge Conflicts
	Resolving Merge Conflicts
	Canonical Conflicting Merge Resolutions

	Related Work
	Empirical Studies based on Repository Analysis of Git
	Merge Conflict Resolution
	Prevention of Merge Conflicts
	Early Prevention
	Merge Techniques

	Methodology
	Data
	Data Collection
	Generating Canonical Conflicting Merge Resolutions
	Metadata

	Results
	Correct Rate
	Metadata

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Discussion
	Summary of Key Findings
	Implications
	Recommendations

	Conclusion and Future Work

