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Abstract
Reliability and safety requirements are especially pronounced in the case of aerospace, robotic,

and other critical systems. Space software, in particular, has historically enjoyed prime applica-
tions of formal methods. Such software is carefully designed, implemented, and verified against
requirements before launch and deployment. Runtime verification is a flight-proven, lightweight
method based on observing information from a system while in operation, and identifying if
observed behaviors satisfy or violate certain requirements. It scales well in complex systems, and
verdicts of monitored requirements may also be used for control decisions throughout the system
operation. However, applications of runtime verification within space software have largely been
residing at the implementation level.\

In this thesis, we investigate the development of runtime verification support at the architectural
level. We specifically target JPL’s F’, a framework enabling rapid development and deployment
of spaceflight and other embedded software applications. We follow a principled approach, with
the overall goal to enable existing F’ systems to integrate monitoring of requirements expressed
as temporal logic statements in a reusable manner. We illustrate runtime verification over a
rocket model, and outline design decisions as well as supporting implementation adopting Metric
Temporal Logic for specification and Reelay monitors for verification.
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1 Introduction
1.1 Problem Setting
Growing demand for software-heavy systems of growing complexity and working in growing scopes
leads to an increase of software practitioners requiring accessible ways of achieving dependability.
The requirements of reliability and safety are especially pronounced in the case of aerospace
systems, robotics, and other critical systems as software errors might prove devastating to the
missions in question.

Formal verification is the proving of the absence of incorrect behavior. Often this is achieved
by model checking, which is traditionally done by exhaustively proving or checking that all states
of a program are permitted by a specification. Model checking of a whole system is often either
infeasible or too costly. Deductive formal verification approaches in which mathematical proofs
are constructed to show the correctness of the program require expertise and are also very work
intensive. And whilst more lightweight deductive proof techniques such as dependent typing
have made big strides they are still far from production ready.

Testing may be relatively cheap but the guarantees provided are weak as the absence of
insecure states cannot be proven and they rely heavily on an engineer’s ability to notice potential
edge-cases. Rare events might go ignored or unrecognized. Whilst fuzzy-testing does help in
regards to rare-events testing it still lacks the hardness of the guarantees given by formal methods.

Runtime verification (RV) can offer a tradeoff between testing and formal verification. RV
does not require a model. But it still allows for a very declarative way to define the required
properties and check them upon a trace of system events occurring at system operation. Because
not the entire state of the program is verified RV can also be used in bigger projects as the
verification time scales super-linearly in model checking.

Advantages are further that hardware faults may be detected by the same properties that are
used to verify software correctness and thus control sequences may be aborted before damage is
done without much additional code. This holds too for the detection of potentially malicious
commands or unforeseen emergent behavior. The verdicts of the monitored properties can also be
used in the normal control flow decisions as the temporal logic can be quite a bit more expressive
than ad-hoc detection of event sequences. Thus even if model-checking is possible one might still
desire runtime verification.

Another important issue regarding the growth in software-heavy embedded systems is the
ability for code reuse and maintainability. As the hardware can be limiting, commonly used
abstractions of the wider software-engineering world are often avoided in favor of performance.
This is where software architecture and supporting frameworks can be leveraged to great effect.
Many tools try to use compile-time guarantees and constructs to simplify development and
provide abstractions that allow the decoupling and encapsulation of components without incurring
runtime costs. These two architectural goals enable teams to work more independently on different
parts of the system, facilitate testing of the components themselves, and increase their reusability.

Creating abstractions to improve programmer productivity without strongly affecting runtime
performance has been an ongoing concern and goal of software engineering since its beginning.

F’ is a framework and architecture that, as we will see, fulfills these requirements.
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1.2 Framework Support for Runtime Verification
The falling costs for bringing payloads to low earth orbit have resulted in a market for lower-cost
space systems, such as so-called cubesats [37]. This development did lead to hardware and
software that allows smaller and less well-funded teams to develop space systems. The interest
in these low-cost space systems is both scientific and industrial.

In the following paragraphs we will introduce the tools used in the thesis and justify our
choices.

One of these software systems is F’, which is an architecture and framework developed
by NASA’s JPL for rapid development of flight software, but it can and has been used in
general embedded systems as well. The architecture that F’ encourages is one based on reusable
components and connections thereof.

There are - as mentioned - already a great many uses of runtime verification in space systems.
Reelay is a header-only library for runtime verification, which allows for online monitoring of
temporal logic properties. It is fundamentally not dissimilar to a lot of other runtime verification
frameworks that are commonly used by teams building critical systems.

Whilst there are fast and ready-to-use libraries providing RV based on temporal logic such as
R2U2 [29] there seemingly has not been any work on providing reusable components for runtime
verification. We believe the that advantages of such would align strongly with the use cases of
the F’ framework and fit well with its architecture.

Since the goal of F’ is enabling engineers to quickly produce software for small-to-medium
sized embedded systems having an easily reusable component for runtime verification of temporal
properties is desired. There is work underway to easily integrate the SPIN model checker [13].
But as we reasoned in the previous chapter this would not fully remove the need or desire to
support runtime verification. This thesis aims to produce such an RV component.

1.3 Contribution
The combination of tools and created software artifacts presented in this thesis have the following
purposes and goals:

• A principled approach to enable existing F’ systems to easily integrate monitoring of
temporal logic statements

• Support engineers to use a declarative style to specify Instrumentation to monitor and the
recognize of sequences of states

• Using F’ enables both ease of deployment and moving verification monitors to a different
physical chip from information creating/gathering chips, if performance concerns arise.

In the taxonomy of software engineering research laid out by [34] this thesis is part of the
development and extension phase for runtime verification in F’.

1.4 Related Work
We could not find previous work that deals with the architectural aspects of reusable runtime
verification. If it has it was mostly about achieving high-performance in an embedded context
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and thus there is much focus on generating monitors in either hardware specification language or
very fast C [30] [3] [[33]][38]. Or on improving reliability in the context of web services [19] [31].
Neither of which is fitting for our target of relatively high-performance embedded systems, such
as those using ARM cortex chips [ArmCortexM4Processor] or similar.

In regards to implementing Runtime Verification in flight systems with small-to-medium scope,
there is some work done by students [23] and older work by bigger teams [21]. So we focus here
on alternatives to the individual tools used in this thesis, namely alternative flight-software or
embedded-systems frameworks or runtime verification libraries.

Reelay, which is adopted in this thesis as the underlying verification engine is similar to R2U2
[33]. Thanks to its inclusion of bayesian networks TL properties can be more involved whilst
still allowing to conclude the origin of the error.

If one were to use MagicDraw [7] with the SysML plug-in one can generate F’ topologies in a
diagramming software. Therefore this approach might superficially be a similar experience to
using Simulink [12]. Both approaches are closed-source in nature and might thus not be applicable
or desirable under certain circumstances. And using Simulink to generate F’ Components might
still require significant engineering effort, but might be an avenue worth exploring in future
research. One downside of both these graphical approaches is the lack of suitability to commonly
used version control systems of the underlying files.

Copilot is a language that enables hard-realtime verification and allows the formulation of
specifications using a domain specific language based on haskell [3].

There are many more tools not explicitly listed here but which might be worth one’s consider-
ation for FSW development [18]. Many of the other solutions seem to lack the popularity and
momentum of F’. And many of the tools developed by NASA can be seen as predecessors to F’
but lack the cohesion and tools it provides.
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2 Background
2.1 Motivating Example
As an example application, we will consider a simple rocket model of which we will build an
F’ component, simulating possible sensor outputs. We then consider a few properties that one
might verify in a real system. The numbers and details chosen are in line with typical student
competition rockets such as in [23].

The simulation is based on the classic Tsiolkovsky rocket equation[8] with random error terms
applied - simulating measurement errors or differences from the theoretical ideal of the system -
so that the system may violate the defined properties. Pressure effects are ignored.

The rocket has an accelerometer measuring acceleration (am), burn rate (b), fuel weight (mf ),
exhaust velocity (ve), and weight of the empty rocket (m0). We also assume there is a ground
station system that can measure the velocity of the rocket (via the doppler effect). This velocity
we will call (vd). The stage of the rocket is one of “Prelaunch”, “FirstStage”, “SecondStage”,
“Descent”, “Landed”.

We also let Ea, Ed, εb be independently normally distributed random variables with mean
0 and standard deviation σa, σd, σb, respectively. The first two random variables represent
the variance of measurement of the accelerometer and of the ground-to-rocket doppler-effect
measurement. The last variable is the variance of the burn rate of the engine.

The Tsiolkovsky rocket equation formulates the force on the rocket at a point in time (t) by
the change of mass (fuel) multiplied by the exhaust velocity multiplied by the current rocket
mass:

F = ma = (m0 − bt)(veb)

From this we derive a few more variables and introduce the simulated errors and inaccuracies:

• ar, the actual rocket acceleration given by ve(b+εb)
m0−bt , where t is time. The maximal burn

time being mf

b
• am = ar + Ea
• vI , the velocity calculated by integrating the accelerometer data

A few of the properties we might want to specify are:

In the scenario presented, a system designer may be interested in checking if certain require-
ments hold at runtime, when the rocket system is in operation. For our purposes we will consider
the following properties:

• The stage must start at “Prelaunch” and after that increase in order
• 10 seconds after FirstStage the burnrate must be more than 20kg/s
• The difference between vI and vd should always be less than 1m/s2 when the stage is

either FirstStage or SecondStage
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Figure 1: The height of the rocket over time as plotted by the F’ ground system (introduced
later)

2.2 A walk through F´
F’ (F Prime) is an architecture, and framework in support of that architecture, which is being
developed by NASA. Its stated goal is to enable component-driven rapid development and
deployment of spaceflight and other embedded software applications [9]. F’ takes a model-based
approach to creating software; letting the developer express the high-level structure in a model
which consists of a data structure and formal specification[25]. F’ makes use of typed interfaces
to provide compile-time guarantees and has built-in unit and integration testing facilities.

There exist a variety of flight-tested components already [4]. F’ also offers operating-systems-
like functionality and thus can be used cross-platform on both bare-metal and desktop systems
which eases development further.

Successful real-world deployments of it exist, such as the Ingenuity mars helicopter [24].

What follows is a short introduction to the F’ concepts necessary to understand the design
and decisions in the rest of the thesis. For a more thorough introduction, there is an excellent
overview by Bocchino et al [17]. There is a separate overview for the FPP modeling language
(which was introduced in F’ 3.0.0) by them as well [25].

2.2.1 Workflow

The main building blocks in F’ are components, which have ports, which in turn are connected
to each other by connections defined in topology definitions. The components are analogous to
C++ classes; ports to their methods. Topologies do not have a one-to-one mapping to C++,
they are both a way to structure bigger projects and a way to represent interaction.

The workflow of using F’ is as follows:

1. Design a topology from the Requirements
2. Decide what existing components can be used and which have to be created
3. Specify the components the system requires (either in XML, FPP, or MagicDraw)
4. Specify how and what the components exchange via ports
5. From these specifications, C++ files are generated that already contain the necessary infras-

tructure and organization to quickly implement the business logic and receive commands.
6. Implement the C++ components
7. Generate and write a unit test for each component
8. Create a topology definition that instantiates components and connects these instances
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9. Test the topology

2.2.2 Operating System Abstractions

By providing operating-systems-like functionality, such as thread management, synchronization
primitives, and input and output, F’ deployments can be run in a multitude of operating systems
and bare-metal environments, easing development. However, the support of thread virtualization
is considered experimental and should not be used in production [1].

2.2.3 Components

Components represent a physical or virtual part of the system. Such as sensors or logging
systems. They provide encapsulation and thus should not communicate with other components,
except by their connected ports.

The use of components is encouraged by the availability of tools for their creation, reuse, and
testing. With the fprime-util suite of python tools, it is easy to create the C++ classes and
corresponding tests from an FPP specification. This suite of tools also streamlines the building
and running of components and deployments respectively.

Components are either Active, Passive, or Queued. This designation determines what
synchronicity of invocations the component supports and how those are handled. Active and
Queued components have buffers for their input ports. The former owns a thread on which
invocations to its ports are processed. The latter needs the work to be done by an Active
component. Passive components are exactly C++ classes and provide no queue or thread
management. They are useful for data transformation between Active and Queue components.
More on why we need this differentiation will be discussed in the next section.

As mentioned there are default components already available in F’, such as the ActiveLogger
which takes telemetry and events and logs them or converts them to telemetry, or the often
used RateGroupDriver. This component can be thought of as a clock. its output is usually
connected to an ActiveRateGroup component whose output in turn is used to schedule the code
execution of components at a fixed rate. However, if the executed code takes longer than the
rate, the next invocation will be delayed and a warning of high priority will be emitted. From
component specifications, one can derive boilerplate for unit tests. This is done by creating a
new CMake executable to which one adds the paths to the .fpp and .cpp component definition,
as well as a main C++ file to drive the test. The derivation of that file is done by calling the
fprime-utils impl --ut command that produces a test main function as well as the boilerplate
for the component instantiation which is required by a test. Thus a lot of potential work is saved.

To ease testing and verification further there is an exploration [25] of directly incorporating
the spin [13] model checker as well as a scenario-based testing specification system.

2.2.4 Ports

The interface of components is defined by their ports. Those are in turn defined by their type and
their kind. The type of a port be zero or more F’ or primitive types and can specify argument
and return types. The kind of a port is either output or input.
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Ports are also one of synchronous/asynchronous/guarded. These, in combination with the
type of the component, determine how the work done by components on input port invocations
is handled. Passive components may only have synchronous or guarded input ports as they
lack a queue to store and process the invocation parameters. That would be required to later
execute the invocation asynchronously.

Active and Queued component types must have at least either one async input port or async
command.

Special types of ports represent the receiving of commands (from the ground station) as well
as events and telemetry. Also, there are serial ports that can be connected with ports of any
type.

Serial Ports can be connected to any type of port. The cost of this flexibility is the loss of
compile-time safety of the interface type checking and the reconstruction of data from such a
port is solely the programmer’s responsibility. A side-effect of the architectural decision to only
allow communication via ports is that it was relatively easy to create patches to ignore broken
sensor input and replace it with something reasonable in the mars helicopter mission [10].

Event Ports are used to communicate notifications or warnings and they can contain data.
For example:

event OVERFLOW_DETECTED(var1: U32, var2: U32) \
severity activity high \
format "Overflow detected: {}, {}!"

would declare a warning event of high severity and two values, and in the ground station log
would be displayed as in 2.

Figure 2: Multiplication Error Event

2.2.5 Ground Station

F’ provides a ground data system (GDS) that allows the dispatching of commands and displaying
of telemetry received. GDS supports creating a dashboard - a custom GUI layout - from
predefined GUI components, which are intended to give a quick overview of the data available to
the GDS from a running embedded system [5]. The GDS is implemented using web technologies
and opens a web interface on the ground station computer thus it can run on the same computer
as the F’ deployment or on a separate one.

2.2.6 FPP

FPP is a modeling language that compiles to XML and C++ and has a more succinct syntax
compared to writing the component and topology specifications by hand in either XML or
C++[6]. Thus FPP furthers the main goals of rapid development of the F’ ecosystem. Its parser
also has better error reporting than the XML parser. Since version 3.0.0 F’ comes with the
FPP tools by default.
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There is a plugin to support development inside Visual Studio Code [28], though it currently
does not much other than code-highlighting 1.

The syntax is c-like and sparse but expressive. For example, a component could be defined as
follows (in e.g. f32adder.fpp):

@ a component for adding numbers
passive component F32Adder {

constant port_nr = 2
@ Input
sync input port valueIn: [port_nr] F32
@ Output
output port valueOut: F32
@ Telemetry
telemetry port tlm

# Telemetry channel definition
telemetry VALUE : F32

}

The lines starting with @ will be translated into comments in the generate C++ file whilst
the lines starting with # are proper FPP comments and will be stripped.

The component in turn would be instantiated and named f32adder like this (usually a
separate fpp file named instances.fpp is used):

instance f32adder: F32Adder base id 0xE00

the base id is used as an offset for the telemetry channels.

The instance could then be connected to other instances in a topology definition file
(e.g. topology.fpp):

connections f32example {
f32generator1.valueOut -> f32adder.valueIn[0]
f32generator2.valueOut -> f32adder.valueIn[1]
f32adder.valueOut -> f32consumer

}

where f32generator1, f32generator2, and f32consumer are assumed to be instantiated
somewhere else.

The final steps of the workflow are adding the .fpp files of the components and other type
or port definitions to the cmake build system. Afterward one can then use the fprime tools to
generate the boilerplate code for the topology and the component. In the generated .cpp and
.hpp files, one can then define what happens exactly when another component invokes (or calls)
a port (by implementing the corresponding method).

1But it does it well and even sets the parts of .fpp files that contain C++ correctly in C++
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2.2.7 SysML and MagicDraw

This is a combination of tools that allows for the graphical drawing of F’ topologies. It was
unavailable to us during the writing of this thesis thus we cannot relate how well the Reelay
component integrates with that environment - or the environment in general. But there seems
to be criticism to this combination of tools by experienced F’ practitioners [25], highlighting the
non-trivial increase in complexity and the lack of ability to generate the ground system dictionary,
which contains the data specifying what commands, parameters and telemetry channels are
available (this is done automatically by the fpp-compile tool thus detail it is not mentioned
otherwise). For the above reasons we decided to not elobarate on the impact of our components
onto this toolchain.

2.3 Temporal Logic
Whilst the history of combining temporal properties with what we today call propositional logic
and the resulting questions of valuations of sentences have their roots in ancient Greece (namely
Aristotle and Diodorus Cronus in the third- to second-century B.C.E., e.g. the master argument
of the latter [32]), we will focus on the more formal work developed in the middle of the 20th
(C.E) century.

We call any logic that can express temporal behavior temporal logic. In the narrow sense,
these have their roots in modern analytical philosophy [22] and later found many applications
in formal verification and as mentioned in runtime verification. Initially, these were branching
time temporal logics, which view time as a tree structure where the future is one path of many
on that tree and the past is known and is thus a linear graph. As algorithms for determining
satisfiability of linear complexity in formula size as well as model size exist for CTL they have
become prevalent in model checking [26]. But CTL suffers from a lack of expressivity (later
remedied by CTL*)[22] such that formulas in CTL can be exponentially bigger than LTL.

Much later on TLAˆ+ was developed by Leslie Lamport, which builds on top of first order
logic and set theory, thus being much more expressive than the other logics treated here. This
system is widely used in industry [15].
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2.3.1 LTL

Linear Temporal Logic is an extension of classic propositional logic by operators representing
a notion of time. This is achieved by having a sequence of assignments for the propositional
variables, Wi (∀i ∈ D) where D is the time domain, which has a total order and can either be
dense2 or discrete. As the name implies this kind of logic considers the future to be fixed in the
sense of there existing only one branch that can be taken, with the past being a line (the path
taken so far)[22].

Some common operators are defined as follows for the variable p at time point j on a discrete
time domain:

©pj Next pj+1 must be true (only exists in discrete time)
♦pj Eventually ∃i ≥ j : such that pi holds
�pj Henceforth ∃i ≥ j : such that ∀k ≥ i : pk holds
pjUpk Until if ∃k : pk then ∀i ≤ k : pi else ⊥
Gpj Globally ∀i ∈ Dpj holds

2.3.2 MTL

Metric Temporal Logic is similar to LTL with an addition of a metric for time, enabling the
expression of durations. The operators thus take some form of duration specification, usually in
the form of an interval, we write op[t0:t1] with t0, t1 ∈ D for the metric version of LTL operator
op, which is only checked on the interval from time point t0 to t1. Not all LTL operators have
a reasonable metric version, in the above table © and G can not have such time restrictions as
they already imply their interval (e.g. ©pj from t0 = j+ 1 to t1 = j+ 1 and Gpj from t0 = inf D
to t1 = supD).

2.3.3 Runtime Verification

The goal of runtime verification is to specify the desired behavior of a system and then check
the adherence to that specification at runtime (online) or afterward (offline). We focus mainly
on the former case. This is done by generating a monitor from the specifications which is then
connected to the running system in such a way that it has access to all the data required to
verify the specification. The monitor is run on a trace of a system. A trace is for, the purpose of
our thesis, a totally ordered set of sets of variables and their values. From the specification, one
derives properties, which describe a set of traces. A property is said to hold for a trace if the
current trace is in the set defined by that property. The monitor checks if a given specification is
satisfied on a trace. [16]

• Monitorability is the trait of a property to be determined from the underlying system. A
trivial example of a property that is not monitorable in our rocket example is “the rocket’s
angle may not exceed one degree for the first 90 seconds of the flight” because the data
required is not part of the system.

2In the usual mathematical sense of dense order
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• Polarity of a specification is whether it captures a state that is allowed or not allowed.
For example, ” “The difference between the integrated speed and the speed measured by
doppler effect exceeds 1m/s” has negative polarity as it specifies a state that is not allowed.
We will assume positive polarity in this thesis.

2.3.4 Reelay

Reelay is a library that provides runtime monitors for past metric temporal logic (pmtl) [35].
It enables the efficient monitoring of dense time metric logic by using a non-pointy (based
on durations) definition. One of the reasons for the achieved performance is the omission of
future-time operators as they were introduced in LTL. Thus only statements about the past are
possible.

The Reelay monitor can either be discrete or dense. In the discrete case the total order
mentioned previously is the only notion of time available. But in the dense case a time variable
is expected to be part of the trace. The value of that variable may correspond to physical units
such as milliseconds (the unit we chose for our implementation). When using a dense monitor
the output of the monitor isn’t a single boolean value but a set of results as the verdict may
change multiple times between two measurement time points [36].

The pre-defined temporal operators are:

pre {A} Y {A} in discrete time: {A} was true at now-1, not available
in dense time

once {A} P {A} Property {A} was true in at least one point in time (t
< now)

once[t0:t1] {A} P[t0:t1] {A} Property {A} at least once true in between now-t0
and now-t1

historically {A} H {A} {A} true at all times in the past
historically[t0:t1]
{A}

H[t0:t1] {A} {A} true at all points between now-t0 and now-t1

{A} since {B} {A} S {B} true if {A} always true since {B}
{A} since[t0:t1]
{B}

{A} S[t0:t1]
{B}

true if {A} always true since {B} was true between
now-t0 and now-t1

Where t0, t1 are time bounds that can be omitted to get unbounded expressions and {A}
and {B} are atoms. Now is the current time.

The monitoring is implemented using sequential networks as opposed to the more commonly
used approaches of rewriting rules or büchi-automata.

2.3.5 RYE-format

RYE is the format used by Reelay for the specification of the properties to be verified [11].
Atoms evaluate to either true or false but they can be constructed more expressively than
in propositional logic. The types of atoms allowed in the Rye are boolean literals, numerical
comparisons, and string equality. The operations of propositional logic not, and, or, and ->
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behave as usual.

A few properties of our rocket example expressed in RYE are:

• P1: The stage must start at “Prelaunch” and after that increase in order

({stage: 'FirstStage'} since not {stage: 'Prelaunch'})
or ({stage: 'SecondStage'} since not {stage: 'FirstStage'})
or ({stage: 'Descent'} since not {stage: 'SecondStage'})
or ({stage: 'Landed'} since not {stage: 'Descent'})

• P2: 10 seconds after ignition the burnrate must be more than 20kg/s

{burnrate > 20} since[10:0] {stage: 'FirstStage'}

• P3: The difference between vI and vd should always be less than 1m/s2 during FirstStage
and SecondStage. Because Reelay formulas do not support arithmetic operations we have
to provide the absolute difference manually, we’ll call it v∆, which we can then use:

({stage: 'FirstStage'} or {stage: 'SecondStage'}) -> {v_Delta < 10}

For the verification to happen we of course need some data. Reelay has chosen the ubiquitous
JSON-format for that purpose. The properties above could be evaluated upon a trace - a sequence
of events occuring at runtime. in practice, and recalling our rocket example, a JSON sequence of
events would have elements of the following form:

{
"time": 577495296, "burnrate": 2000, "v_I": 702.41217,
"v_Delta": 5.256469, "stage": "FirstStage"

}

Note that if the monitor is chosen to be discrete-time, the time field is not needed and the
temporal intervals correspond to the number of events passed.

Related to events are two features of Reelay [14]:

• Condensing refers to the ability of reelay to reuse events if only the time changes. This
saves memory costs and decreases the number of events that need to be looked at when
verifying a property.

• Persistence refers to the fact that if an event is missing some values compared to a previous
event the values of the earlier event are reused.

2.3.6 C++

Because space systems that are targeted by F’ generally strive for using as few resources as
possible there are a few concessions to be made in the use of C++ features. As both RAM
and ROM that are radiation-hardened cost magnitudes more than their terrestrial counterparts,
features that increase the binary size (such as templates) are discouraged. Further, the use of the
F’ functions over std-library equivalents is encouraged for efficiency and bare-metal compatibility.

In the implementation, we tried to stick to the style and limited feature set suggested by [2].
Though there were quite a few concessions made in the name of quicker development time and
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ergonomics, which due to Reelay not being written with these strict limitations in mind should
not be too impactful a decision on either runtime performance or compile time.
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3 Runtime Verification for F’
In a top-down approach, we will now present how the Reelay monitors were mapped to the
concepts of F’ and explain some of the design decisions and alternatives. For ease of understanding,
we will assume there to be a component PhysicalSensor representing some sort of data generator,
the output of which we wish to verify with Runtime Verification. Following our example this
component will interchangeably be called RocketSimulator in diagrams and later sections

3.1 Monitor Adapter Pattern
One of the fundamental design challenges with using an off-the-shelve RV-library, like Reelay,
is that to verify anything we first need to create inputs in a format that the library requires.
In the case of Reelay that is - as mentioned - the JSON-format. As overhead is a major design
concern of F’ the more natural expression of such data therein would be binary streams, which
are used liberally by component connections (the F’ serial ports) and connections to external
physical systems (using standard protocols like GPIO, UART). Thus there needs to be some sort
of translation from the data-streams of sensors or F’ provided components to the JSON-format
required by Reelay. These generated events should then be validated at a fixed, and relatively
high rate for the RV output to be useful.

One of the goals of the provided components is easy integration with existing components.
Thereto we split the creation of events and the monitoring thereof into two components, called
them ReelaySensor and ReelayMonitor. ReelaySensor creates the ReelayEvents from data
gathered from PhysicalSensor. These events are then sent to the ReelayMonitor which is the
actual verifier and has an output port for the verdicts. This decouples the data transformation
from the data verification, which in turn makes it possible to have different implementations of
ReelaySensor whilst fully reusing the ReelayMonitor. The ReelaySensor is therefore similar
to the Adapter in an adapter pattern [20]. The ReelaySensor components can also have ports
to forward the incoming data to other components. This is useful if the ReelaySensor is used
as part of a larger, existing system and one wishes to create Reelay events to send to a monitor,
but have the data generated still be available as if connected to the original destination. One
may use one or more instances of each component in one topology and use the output of one
instance of the ReelaySensor as the input of another instance. This allows for the mixing of
multiple approaches to the sensor components as later illustrated.

3.2 ReelaySensor
Before diving into the details of both ReelaySensor and ReelayMonitor we will first give a quick
justification of the diagram layout we have chosen to represent components. It is similar to the
ubiquitous UML class diagram. But as we have seen previously F’ components don’t necessarily
map one-to-one onto classes of object-oriented programming. Thus our diagrams have three
categories of members instead of the typical two. The first one contains member variables and
does specify their visibility: using + for public and - for private. The second category contains
ports and subcategories noted in bold, such as input and output. The third, and last category
contains the commands of the component. We note that the diagrams have neither an exact
correspondence to the FPP definitions nor the C++ implementations and are not exhaustive.
They aim to serve as illustration aids and are intended to be interpreted informally. Thus we also
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omit some types as they can get quite verbose and are not relevant to the understanding of the
design, or simplify port types by giving the underlying type instead of the full port type, e.g. if a
port type is ReelayEventPort (event : ReelayEvent) we will write ReelayEvent as a type.

ReelayStaticSensor

Output Ports:
reelayEventOut
eventOut
rocketStatePort() -> RocketStatePort
Input Ports:
schedIn
Telemetry Ports:
reelayEvent
Commands:

Figure 3: A Pull-Based, Static ReelaySensor Component Diagram

The ReelaySensor is most naturally represented by a queued component, which emits events
on a schedule set by a rateGroupDriver. These events contain the most up-to-date data of all
the actual sensors for which this ReelaySensor instance is responsible. But as both queued and
active components add quite significant overhead to the complexity of the system, their use
is discouraged on bare-metal. We will use a passive component to maximize the usefulness of
our provided components. Further, thanks to persistence of the monitors provided by Reelay we
don’t have to accumulate the values in the ReelaySensor and can simply emit events even if
they might not contain all the values.

In regards to the ReelaySensor there are two approaches discussed and one implemented in
the finalized topology example:

1. Having the input ports be of type serial and having a port that then specifies the data
types expected on that port, we call this ReelayGenericSensor.

2. Having the input ports be statically typed, we call this one ReelayStaticSensor.

Version (1) has the advantage of being more reusable at the cost of being type-safe. It is less
safe because a discrepancy between the topology definition and the runtime setting of the port
types can lead to garbage data being sent to the ReelayMonitor. Also one has to ignore the
warnings about ports not being connected if there are fewer input ports than the specified number
as there is no documented way to parametrically specify the number of ports of a component
instantiation in FPP (or XML). This approach will be discussed later on in 3.6. The main issue
with the ReelayStaticSensor is that one has to create a new F’ component for every kind of
PhysicalSensor one wants to use because the connections need matching port types on both
ends. Therefore this version requires a new type of sensor for each kind of input one wishes to
monitor, but it offers compile-time safety.

There is also the question of which component has the output port and which one has the
input port. If the ReelaySensor has the input port we call it ‘push based’ as the component
representing the physical sensor will have to invoke the port for data to travel to the ReelaySensor.
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On the other hand, if the port on the ReelaySensor is an output port that has a return value,
declared in FPP along the lines of output port get_data() -> SensorData, then we call it
pull-based as the ReelaySensor invokes the port to get the data. If the physical sensor has
many more changes than we wish to forward to the monitor we can use the pull-based approach,
however, if we wish to have every single change visible at the monitor we can use the push-based
approach. Regarding these two design decisions we have the following two-by-two matrix:

Pull Based Push Based
(2) Typed

(1) ’Runtime Typed’

There is a third, somewhat trivial approach - generating the ReelayEvents directly on the
PhysicalSensor component, but as this is entirely deployment specific, we will not show it
here. This approach is fine if the project intends to use the provided Reelay components
from the beginning but it could be quite cumbersome to retrofit the corresponding ports into
existing components. It also violates the single responsibility principle to an extent as the
PhysicalSensor already has the purpose of providing data and transforming that data could be
seen as orthogonal to that.

3.3 ReelayMonitor

ReelayMonitor
- properties
- log_positive_verdicts : bool
- monitor_options
- monitors
Input Ports:
eventIn : [5] string
newProperty : ReelayProperty
removeProperty : U32
time get timeGet
Output Ports:
verdictOut : ReelayVerdict
verdictOutBool : bool
C++ only methods:
- add_property_impl(string, id, bool) +
add_property(string, id)
Events:
NO_PROPERTY_REGISTERED()
INVALID_PROPERTY_STRING (property)
INVALID_EVENT_STRING (reelay_event)
NEW_PROPERTY_REGISTERED()
NEGATIVE_VERDICT (property)
ALL_PROPERTIES_POSITIVE()

Figure 4: ReelayMonitor Component Diagram
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This component contains the monitors provided by the Reelay library and manages the
verification of properties. The verdict of which is then sent onwards to consumers, such as
telemetry, components that are part of the control system, or by way of a ReelaySensor to
other ReelayMonitor instances.

The ReelayMonitor C++ implementation has a method add_property which registers the
formulas to be verified. This can be used at runtime or at instantiation time like this:

instance reelayMonitor: Ref.ReelayMonitor base id 0xE000\
{
phase Fpp.ToCpp.Phases.configComponents """

reelayMonitor.add_property("{{stage: 'FirstStage'} \
since not {stage: 'Prelaunch'}}", 0);

"""
}

The add_property_impl method takes a string containing a Reelay formula and an id which
can be used to delete the corresponding property (the management of the ids is up to the
user). The method takes the property provided as a string and constructs a dense-time Reelay
monitor from it. The third argument of type bool, added_at_runtime, is set to true if the
property has been added by the newProperty port implementation and is false when called
from add_property, which is the method used by users at instantiation. The ReelayMonitor
does emit a fatal-priority event if the registered formula is invalid but only if added_at_runtime
is false. If the formula was added at runtime the ReelayMonitor will simply ignore it and log
a high-priority error. This is done to avoid the system crashing, but to make it obvious as close
to compile-time as possible that one of the properties defined is invalid.

The Reelay monitors used in our implementation are densely timed because the rate of
verification is given from outside the component and might change at runtime. Therefore events
need to have a time variable. If that is missing from the JSON event to the ReelayMonitor that
component will add one in the unit of milliseconds as given by the special time port timeGet.
Because the dense time behaviour reelay would require stepping through each increase of the
time value when updating a monitor we use dense time behaviour as that is more efficient when
there are large jumps (around 100 steps) in the numerical value of time [14]. And since we want
milliseconds as our base unit, to enable a great range of update rates, large jumps in time are
not uncommon, when chosing update rates of 10Hz or less.

The difference between verdictOut and verdictOutBool is that the former supplies additional
information about what property failed whilst the latter outputs true exactly if all properties
registered on a monitor hold. The definition is as follows:

port ReelayVerdictOut (
verdict : bool,
property_id : U32

)

The property_id is meaningless

The monitor does the following on an eventIn port invocation from another component:
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1. Check if the event contains valid JSON, if not a high-priority event INVALID_EVENT_STRING
is sent out

2. If the JSON does not contain a time field, one is added based on the getTime. This time
is in milliseconds.

3. Check all properties individually if they are satisfied by the current values. Satisfy means
here that no value from the verdict-list returned by the reelay monitor is false. If this is
not the case a high-priority NEGATIVE_VERDICT event is sent out.

4. If all properties are satisfied a low-priority ALL_POSITIVE event may be sent out if
log_positive_verdicts is true.

The reason we have five eventIn ports is due to limitations concerning the F’ string capacity
discussed later in 3.5.

3.4 Design Rationale
To communicate with a component one can either send it a command or invoke one of its ports.
The first approach is mostly used for manually giving inputs to the system or high-level scripting
by use of command sequences. The second way is used for communication inside the system.
As we are designing components for reuse the balance to strike in regards to how much of a
component is controlled by commands as opposed to input ports is non-obvious. The downside
of having too many commands in pre-made components is making the command selection in the
ground station cluttered and as the components are kept generic the command names might not
be very useful to the issuer of commands, which may result in user error with possibly dangerous
results. End-users can create components receiving commands and issuing the corresponding
message to the provided components over ports easily, the main downside being more components
and a more complex topology to maintain. In our view the downsides of generically named
commands that may be confused by users outweigh the introduction of a slight increase in
complexity, thus our provided components only use ports as inputs.

A similar issue exists in regards to communicating monitor verdicts from the ReelayMonitor to
either other components or the GDS. One can have a telemetry port that sends the events directly
to the ground station or an output port which communicates with other components. Relying only
on the former approach has the downside that if such a verdict output port were not connected
to a component communicating the violation of a property to the necessary places such errors
might go entirely unnoticed during testing or simulation. This might prove catastrophic, later
on. The downside of the former approach is that a lot of potentially unnecessary communication
is created, resulting in wasted energy and a more busy ground station log. We used a hybrid
approach of having both ports available. To avoid cluttering the logs the logging of positive
verdicts can be turned off. But to avoid an error detected by RV going unnoticed the logging of
a negative verdict is always logged with high priority. In doing so we assume that the properties
of the system are expressed positively; that is if the result is true the system is assumed to work
as intended in regards to the property covered by RV.

Whilst we thought about introducing a parameter to the property registration for a human-
readable name (e.g. speedDiffMaximum) we decided against that because this can relatively
easily be handled by an additional component managing the properties, therefoe we don’t need
to impose the costs of those strings onto all users of the ReelayMonitor component. We use
the dense-time behavior and do not provide an easy way to configure the options of the Reelay
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monitor used. One of the reasons for that decision is that verification behavior might change in
unexpected ways when changing to discrete-time behavior and the time variable might lose any
physical meaning. Therefore we chose to hide the monitor setting details.

3.5 Limitations
As F’ is intended to be usable on memory-limited hardware it generally avoids allocations at
runtime thus the type Fw::String has a statically allocated buffer with a default capacity of
256 bytes (which can be adjusted by changing the macro declaration FW_FIXED_LENGTH_STRING).
A result of this limitation is that one has to take care that the total size of one JSON event
(sent from ReelaySensor to ReelayMonitor) fits into that size. The solution would have been
to implement an abstract FPP-type JSON to pass the data between the sensor and monitor. F’
requires anything sent over ports to inherit from the Fw::Serializable abstract class. This
in turn means that the serialized maximal size of the serialized JSON object would have to be
known at compile time. Therefore even this more elaborate approach would simply increase
the limit (and decouple it from the Fw::String‘s capacity, lowering the overhead added by
increasing the limit of all strings used), not remove it entirely. But since the serialization may be
in a binary format, the size of the JSON object could be reduced compared to the same object
in a string format. On the other hand, because Reelay monitors themselves use the nlohman
JSON library [lohmannJSONModern2022], which was not developed with the same restraint of
runtime allocations in mind as F’, the monitors aren’t suited to low-memory systems.

As a compromise, we rely on Reelay’s persistence to remember all values it ever saw and
provide more ports to which the JSON strings can be sent (eventIn). This automatically
multiplies the total length of a verifiable event by the number of ports provided (five in our case).

3.6 Towards A Generic Sensor
As we have mentioned earlier, having a reusable, generic ReelaySensor would greatly ease the
integration of our components into existing F’ deployments. This section describes such a
component, but due to challenges faced during the implementation, we have not been able to
fully realize it. The analogous issue of having a user-definable way of declaring the type of an
argument or member is solved in C++ by templates or inheritance, those are both not currently
understood by FPP. But there exist serial ports which can be connected to any other type
of port. In theory, this enables the creation of a generic Sensor, however, the details are not
documented and we lacked the time to reverse engineer the underlying format, which would have
been necessary to deserialize the data received by such serial ports. Thus this section has to be
seen as an outline for future work.

An example instantiation of the generic Reelay sensor might look like this for receiving the
data of our simulation component:

instance reelaySensor1: Ref.ReelayGenericSensor base id 0x0E200 \
{

phase Fpp.ToCpp.Phases.configComponents """
reelaySensor1.set_data_channel_name(0, "v_I", Ref::ReelayDataType::F32);
reelaySensor1.set_data_channel_name(1, "v_Delta", Ref::ReelayDataType::F32);
reelaySensor1.set_data_channel_name(2, "burnrate", Ref::ReelayDataType::F32);
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ReelayGenericSensor port_types[10]
- properties
Input Ports:
serialIn : [10] serial Output Ports:
serialIn : [10] serial reelayEventOut : reelayEvent
Events:

Figure 5: ReelayGenericSensor Component Diagram

reelaySensor1.set_data_channel_name(3, "stage", Ref::ReelayDataType::String);
reelaySensor1.set_data_channel_name(4, "height", Ref::ReelayDataType::F32);
"""

}

This sets up 5 serial ports, one for each data channel. The data channel names are used to
identify the data in the JSON object sent to the monitor. The data type is used to deserialize
the data received by the serial port. The data type is an enum containing the allowed types:

enum ReelayDataType {
Bottom = 0,
F32,
Bool,
String,
ReelayEvent,

}

}

The bottom type is used to catch accidental default initializations of the data channel
definitions. The ReelayEvent type is present to enable ReelaySensors to send events to other
ReelaySensors, this might be useful if one wants to verify simple properties of a subset of a
system’s values with one monitor and more complex properties requiring the data of multiple
sensors with another monitor, running at a lower rate.

The output serial ports can be used to simplify the integration into existing systems. The
data received by the serial ports can be forwarded to other, already existing components (Sensor
Consumers). As illustrated by figure 6, where the double dashed lines indicate serial port
connections.

3.7 Alternative designs
As the properties can get quite long there might be a desire to work on files containing the
specifications rather than on the individual strings thereof. This could at present be addressed
by adding two components. A FileManager component instance would be responsible for the
on-disk organization of the specification files and a provided component that loads the individual
properties into the ReelayMonitor component from the FileManager.
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PhsyicalSensor1

PhysicalSensor2

PhysicalSensor3

Generic Reelay Sensor
ReelayMonitor

ReelayEvent

Sensor Conusmers

Verdict

Figure 6: Generic Sensor Example

The monitor definition of the ReelayMonitor could be supplied at the FPP-component
initialization by changing the constants used in the creation of the monitor. An instantiation of
a dense-time monitor from the end-user perspective may be along the lines of:

instance reelayMonitor: Ref.ReelayMonitor base id 0xE000\
{
phase Fpp.ToCpp.Phases.configConstants """

enum {
INPUT_T = U32,
OUTPUT_T = U32,
MONITOR_TYPE = ReelayMonitor::DiscreteTime

}
"""

}

Whilst the performance overhead would be relatively minimal the complexity overhead for
both the implementors (us) and the users was deemed too high, therefore we abstained from
implementing this feature.

Another reasonable modification of the ReelayMonitor would have been to run the monitors
at a fixed rate and not every time an eventIn port is invoked. This might reduce the overhead
of the monitors, but would also reduce the usefulness of the monitors as they would not be able
to react to events as they happen. In the worst case the verdict output would be delayed by the
rateGroup’s schedule rate.

21



4 Implementation & Deployment
To show how the components interact and behave in an F’ deployment we will show here the
details of using the provided components to verify the properties of our rocket example.

4.1 Rocket Simulation component

RocketSimulator
- rocket_state
Output Ports:
rocketState : RocketStatePort
Commands:
TOGGLE_SIMULATION()
Telemetry:
v_I: F32 id 0
v_Delta: F32 id 1
burnrate: F32 id 2
stage: RocketStage id 3
height: F32 id 4
remaining_fuel: F32 id 5
exhaust_velocity: F32 id 6
rocket_time: F32 id 7

Figure 7: RocketSimulator Component Diagram

As mentioned in our case the only ‘physical sensor’ is the rocket simulation. This component
is a naive implementation of the rocket model introduced earlier, with two stages. Once the
first stage no longer has fuel for the next time step the second stage gets activated. Every time
the scheduling port receives an event, the rocket simulation component updates the state of the
rocket and invokes the output ports to send those to the connected component. The integration
of the rocket equation is done by a left Riemann sum without regard to numerical stability. The
purpose is solely to test the rest of the system. Care must be taken that the time step in the
simulation corresponds to the time step of the to schedIn connected rateGroup. For simplicity
this has to be done manually; if the update time value in run1cycle in Top/Main.cpp is the
same numerical value as rate_group_dt the numerical time values correspond to milliseconds
and the simulation runs in real-time. Then numerical interval values in the Reelay properties
correspond to milliseconds. However the rocket time can be configured to move at an arbitrary
rate, but care must be taken to change the interval definitions of the properties accordingly as the
ReelayMonitor’s inserted time value is in milliseconds and the rocket simulation does not provide
its internal time in our implementation. We have defined a macro, BASE_SIMULATION_DELAY in
RocketSimulator.hpp to minimize the chance of confusion.

The rocketState output port is used to send the current state of the rocket to the
reelayRocketSensor component when it is invoked (to enable a pull based sensor). It is defined
by:

RocketStatePort (vI: F32, vDelta: F32, burnrate: F32, stage: RocketStage)
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The telemetry ports are used to plot and observe the values from the simulator in the ground
station system. There is a provided chart definition file called rocket_charts.txt in the Ref
directory. Opening that from the Charts tab in the ground system will show plots of the height,
acceleration, burnrate, etc. of the rocket. The large four large jumps correspond to the launch,
the first stage burnout and the second stage ignition and burnout. The small jumps arise from
the random terms from our model.

Figure 8: Some values of the rocket plotted (acceleration, burnrate, remaining fuel) over time)

The rocket model with normally distributed erros with mean 0 and σa = 0.01 and σd = 0.5
(same notation as in ??) has the follwing speeds and speed difference:

From 9 shows from top-to-bottom: vI , v∆, vd over time.

4.2 Build system
There is a non-trivial amount of CMake used by F’ deployments to build deployments. This makes
changes to the build settings - even for relatively simple tasks such as keeping debug symbols in
the final binary - relatively challenging. Thus we will give a brief outline of how to adapt the
CMake files for the deployment to include the Reelay components and their dependencies.

The F’ build system is organized by heavy use of the CMake function add_fprime_subdirectory(dir),
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Figure 9: Speed and speed difference of the rocket

which takes the name of a directory and adds its content to the current build - handling F’ specific
things such as FPP component declarations and the test setups. Inside the specified directory the
add_fprime_subdirectory(dir) function expects a CMakeLists.txt file containing usually a
declaration of the .fpp and .hpp files to be included by this subdirectory and a call to register
the current subdirectory as an fprime module (register_fprime_module()):

set(SOURCE_FILES
"${CMAKE_CURRENT_LIST_DIR}/Component_specification.fpp"
"${CMAKE_CURRENT_LIST_DIR}/Component_specification.hpp"

)

register_fprime_module()

There is a top-level CMakeLists.txt file that is responsible for including the nec-
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essary modules. This is where a user of our components would have to add the line
add_fprime_subdirectory("${CMAKE_CURRENT_LIST_DIR}/ReelayComponents/") where
ReelayComponents is the directory which contains the CMakeLists.txt importing our provided
components.

Reelay depends upon the cudd library for implementing the monitors [27]. Therefore we have
to link any executables created by the build system with that library. First, we have to locate
the library on the system of the user. This is achieved by using the CMake functions

add_library(CUDD_LIB STATIC IMPORTED GLOBAL)
find_library(CUDD_LIB NAMES libcudd)

in the CMakeLists.txt in ReelayComponents which, if one has installed cudd, will create a
Cmake library referenced by the name CUDD_LIB. But then to link to the library we have to use
the following in the highest-level CMakeLists.txt file (in the example this is the one located
example/Ref):

target_link_libraries("${PROJECT_NAME}" PUBLIC "${CUDD_LIB}")

This is not great because it forces the user of our components to make two changes to that file.
But due to lack of documentation, the complexity of the F’ build system, and variable shadowing
of the ${PROJECT_NAME} in submodules we were unable to create a more elegant solution.

4.3 Workflow
The Workflow of monitoring an F’ deployment can be summarised as follows:

1. Understand the system to be monitored and the properties to be verified
2. Specify the properties to be verified in natural language (e.g., the stages should increase

monotonically).
3. Generate the Reelay formulas from the natural language specifications.
4. Determine where the necessary data originates and where it will be required; how many

Monitors should there be? What kind of Reelay sensors should be used? Should the JSON
events be created directly? Is there an opportunity to use temporal logic instead of ad-hoc
methods for determining certain states?

5. Create the necessary components and connect them to satisfy the requirements in (4)
6. The result of (5) is a topology using our provided components to verify the specification

from (2).
7. Run the deployment and observe the results.

4.4 Workflow Example
As there are a lot of technical details to get F’ to interact with the ground station system. For
sake of simplicity we assume that we take the Ref example deployment, which already implements
these details and will extend it to contain the following topology:

We take the properties from the example deployment formulated in the RYE format directly
from 2.3.5. With that and 2.1, we have steps (0), (1), (2) complete.
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rocketSimulator reelayRocketSensor reelayMonitor

simulationRateGroup reelaySensorRateGroup

Verdict

Figure 10: Rocket Simulation Topology

Now one needs to copy the the provided directory containing the Reelay components into
/Ref/. Then add the necessary lines to the CMakeLists.txt mentioned in 4.2. Further add the
following line to the Ref/CMakeLists.txt file to load the Reelay components:

add_fprime_subdirectory("${CMAKE_CURRENT_LIST_DIR}/Reelay/")

As we wish to demonstrate a minimum viable sensor and monitor setup we will have one
ReelayMonitor and one ReelayStaticSimulator implemented for transforming the data of our
rocket simulation into JSON-events. With that step (4) is complete. Because the Sensor is
implementation specific we put it in the namespace Ref, just as the RocketSimulator.

To construct our topology and achieve step (5) we need to create instances of the components
used so in the instances.fpp file in the /Ref/Top directory we add the following:

instance rocketSimulator: Ref.RocketSimulator base id 0xE400

instance reelayRocketSensor: Ref.ReelayRocketSensor base id 0x0E200

instance reelayMonitor: Reelay.ReelayMonitor base id 0xE000\
{

phase Fpp.ToCpp.Phases.configComponents """
reelayMonitor.add_property("\
({stage: 'FirstStage'} since not {stage: 'Prelaunch'})\
or ({stage: 'SecondStage'} since not {stage: 'FirstStage'}\
or ({stage: 'Descent'} since not {stage: 'SecondStage'}\
or ({stage: 'Landed'} since not {stage: 'Descent'})", 0);

reelayMonitor.add_property("({stage: 'FirstStage'} or {stage: 'SecondStage'})\
-> {v_Delta < 10}", 1);

reelayMonitor.add_property("{burnrate > 20} since[10:0] {stage: 'FirstStage'}", 2);
"""

}
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For simplicity again we assume the existence of two instances of Svc.ActiveRateGroup named
simulationRateGroup and reelaySensorRateGroup.

Then in topology.fpp inside of /Ref/Top we add the following:

connections Monitoring {

connection simulationRateGroup.RateGroupMemberOut[0] -> rocketSimulator.schedIn
connection reelaySensorRateGroup.RateGroupMemberOut[0] -> reelayRocketSensor.schedIn

connection reelayRocketSensor.rocketState -> rocketSimulator.rocketState
connection reelayRocketSensor.reelayEvent -> reelayMonitor.eventIn

}

Finally we run fprime-util generate and fprime-util build to generate the necessary
code and build the executable. The result is a binary that can be run by running fprime-gds in
the Ref directory.

When starting fprime-gds the simulation is initially turned off so one can load the provided
chart definitions to observe the simulation. When sending the command TOGGLE_SIMULATION
the simulation is turned on and the rocket starts to move. Once the simulation is started it
advances by time-steps dt. At every time step, new values for the rocket state are calculated.

To change the speed at which the simulation runs one needs to configure the cycle duration of
the F’ deployment. In our example deployment, this means changing the run1cycle function
inside Main.cpp inside the Top folder.
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4.5 Workflow Example Outputs
Figure 11 shows the event stream when the standard deviations of the simulation are chosen
small, so the error never gets big enough to cause our properties to no longer be valid. So they
all hold.

Figure 11: Screenshot of the ground system Events overview showing all properties passing, with
the logging of positive verdicts enabled

Figure 12 shows the event stream when the standard deviations of the simulation are chosen
large (here σa = σb = 15), the error gets big enough to cause our speed difference property (P3
from 2.3.5) to fail. The green events mark the simulation start command and the event informing
us of the execution of the command.

Similarly for large enough values of σb the property P2 will fail.
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Figure 12:

5 Discussion
As mentioned one of the issues with the monitor-design pattern in FPP is that there is no way
for a user to define the type of data that is sent over the serial connections and have the
compatibility of this declaration verified in regards to the type of data that is actually sent. This
issue could be solved in stand-alone C++ using templated classes, but neither F’ nor FPP have
such a concept, though it would in our opinion greatly ease the creation of reusable components.

Whilst altering the provided components to use R2U2 was considered - and would be reasonably
straightforward - it was deemed out-of-scope for this thesis. As mentioned in related_work R2U2
has some distinct advantages over Reelay but all the additional user functionality comes at the
cost of complexity which is not coherent with the philosophy of rapid development present in F’.
But an unmatched benefit of R2U2 is the ability to compile the monitors to Verilog and thus to
FPGA’s.

As F’ allows for components to be physically distributed accross space (and thus time) the naive
notion of time used by our monitor might not always suffice. But we deemed this out-of-scope
for this thesis.

5.1 Conclusions and Outlook
We have shown how to build components for runtime verification for F’ on the basis of Reelay and
showed different approaches of how to integrate such a component. We have also implemented a
fully reusable monitor component and shown its usefullness by providing a small example. This
demonstrates the feasability of creating more advanced and more reusable components in F’
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and the potential of the monitor-design pattern for runtime verification in a component based
architecture.

We also motivated and outlined future work towards a reusable Reelay event translator, a
generic ReelaySensor. But this work also indicates the need for a more general solution to the
problem of compile time checked parametric-like types in FPP.

Further work is required to test the performance implications of our components on embedded
systems as well as show the feasibility of using our components in a more complex F’ deployment.
Another avenue for exploration might be how to integrate another Runtime verification framework
such as R2U2 using our Architectural approach.

We also hope that this thesis and the accompanying code will serve as a starting point for
others to explore the possibilities of runtime verification in F’ or for the developement of reusable
F’ components in general.

The code can be found on github or the university of bern gitlab.
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